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Abstract 

Representing complex science inquiry tasks for item response modeling presents a 
number of challenges for the assessment designer. Typically, such tasks provide evidence 
of multivariate aspects of learning and involve sequential or interdependent responses. 
The BEAR Scoring Engine was developed to compute proficiency estimates for such 
tasks. It produces these estimates using a multidimensional, polytomous extension to the 
Rasch model known as the Multidimensional Random Coefficients Multinomial Rasch 
Model (MRCMLM). This paper presents background information on how proficiency 
estimates are computed using this model and then describes how a number of assessment 
tasks can be modeled and estimated using the scoring engine.  
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Introduction 
An assessment is comprised of a series of tasks that are administered to a 

respondent to elicit evidence about his or her ability, behavior, or attitude. These targeted 

abilities, behaviors, or attitudes are referred to as constructs; measuring an individual’s 

locations on the constructs is the goal of assessment. A unidimensional construct can be 

represented as a continuum from having less of the ability, behavior, or attitude to having 

more of it, and although a particular assessment may target a narrow range on the 

continuum, the construct itself is theoretically without bounds. Examples of constructs in 

an educational setting might include “knowledge of force and motion” or “ability to 

apply inquiry skills when solving a problem.” In a healthcare setting one may find 

constructs such as “physical function” or “cognitive function.” And, in a political survey 

setting “attitude about voting” or “belief that U.S. troops should be withdrawn from Iraq” 

could be constructs of interest.  

A construct map is a representation of a unidimensional construct, including 

qualitatively different ordered levels for both the items that tap into the constructs, and 

the respondents who populate the construct. Figure 1 shows the respondent side of a 

construct map. When we speak of measuring, we mean identifying the location of a 

particular respondent at some point on the construct continuum. Aligning all items and 

respondents on the same continuum enables valid and reliable comparisons between 

respondents at a specific point in time, and within a respondent at different time points. 
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Constructs are considered latent in that they cannot be directly observed; instead, 

we must draw inferences about a respondent’s location on the construct from evidence 

we gather through observation. Defining one or more relevant construct maps is the first 

building block for assessment development as advanced in the BEAR (Berkeley 

Evaluation and Assessment Research center) Assessment System (Kennedy, 2005; 

Wilson, 2005). In the context of this paper, we refer to the collection of constructs of 

interest for a particular assessment or for a series of related assessments as the dimensions 

of an assessment model. Figure 2 is a graphical representation of a two-dimensional 

assessment model. In this example, an assessment designer has theorized that both 

Science knowledge and Mathematical ability contribute to a person’s response to a 

particular assessment task. In addition, the two constructs are related to one another, as 

indicated by the curved line between them. 

 
 

 

Construct  Map  
 

Increasing sophistication in understanding
 

 

Description of what a student can do at a 
high level of understanding.

 
    

 
  
  
       
  
    

 
 

Description of what a student can do at a 
moderate level of understanding.

Description of what a student can do at a 
modest level of understanding.

Decreasing sophistication in understanding

Figure 1.  A partial construct map describing how students are expected to perform 
at three levels of understanding on the construct.
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Figure 2.  Representation of an assessment model involving two constructs demonstrating the 
assessment goal of measuring both Science and Math knowledge. Both constructs are needed to solve 
the assessment task. 

 
An assessment delivery system, whether computerized or manual, is comprised of 

four interrelated processes, as described in the Four Process Model developed by 

Almond, Mislevy and Steinberg (2002): 1) Assessment tasks are selected for delivery to 

the respondent, 2) the tasks are rendered and presented to the respondent and respondent 

work products are collected, 3) the work products are evaluated and categorized into 

evidence associated with the targeted constructs, and 4) the evidence is used to draw 

inferences about the constructs for individual respondents. Within an assessment delivery 

system, a scoring engine is used to implement the fourth process to produce proficiency 

estimates in accordance with a particular measurement model. The measurement model 

defines the way evidence is used to draw inferences about respondents’ proficiencies in 

the domains of interest; that is, it connects the evidence to the constructs. 

The individual responses from a work product are referred to as item responses 

(an example is shown in Figure 3) and the evaluations of those responses into 

Science Knowledge Math Knowledge 

Task
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qualitatively different levels (i.e., response categories) are referred to as scores in this 

paper. Thus, one assessment task may include multiple item responses. We note that a 

single score can be associated with multiple constructs in what we refer to as a within-

item multidimensional model.  Multidimensional models are explained in the next 

section, and examples of associated measurement models are included in the 

Measurement Model Examples section. 

 

In many assessment environments, for example in assessing scientific inquiry 

abilities, assessment tasks provide evidence of multiple aspects of knowledge and involve 

sequential and interdependent responses. Designing measurement models that capture the 

rich information about respondent thinking available in such tasks presents the 

 

 
Figure 3.  Sample of an assessment task with one stimulus prompting a sequence of 
interdependent student responses. 

Common stimulus 

Three item 
responses. 

Rprimi
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assessment developer with a number of challenges. The BEAR Scoring Engine is 

designed to deal with a number of complexities associated with such tasks. It uses the 

Multidimensional Random Coefficients Multinomial Logit (MRCML) model (Adams, 

Wilson & Wang, 1995), which provides a generalized solution for a family of 

multidimensional, polytomous Rasch-based models. It also accepts a wide array of 

parameters to define the model, for example, allowing the designer to specify models 

representing item bundles and/or within-item multidimensionality. Assessment 

developers specify the model by defining a prior multivariate distribution, scoring and 

design matrices, and anchored item parameters. These specifications and the response 

data are sent to the Scoring Engine, which applies the appropriate proficiency algorithm, 

computes proficiency estimates, and returns updated respondent locations on the 

constructs to the requesting application. The assessment application determines what to 

do with the information. For example, reports and charts may be generated, narratives for 

formative feedback may be provided, or the information may provide input for 

processing decisions such as which task to deliver next or the selection of an appropriate 

tutorial segment.  

This paper presents background information about how proficiency estimates are 

computed using the MRCML model and then describes how measurement models might 

be developed for a number of assessment tasks.  

Measurement Models 
To compute the probability of achieving a score of 1 rather than 0 on item i, given 

an item difficulty parameter of δi, and a specific level on the construct, denoted as θ in 

the unidimensional case, we use a Rasch formulation (Rasch, 1960) in the form: 

Rprimi
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When an item response has only two possible values, correct or incorrect (e.g., in 

an educational context), the item difficulty is an expression of how much ability a person 

needs to give a correct answer. By convention, we describe the item difficulty as the 

proficiency level where the respondent is equally likely to get a correct or incorrect 

response (that is, both probabilities are .5). In Figure 4, for example, the item difficulty is 

-0.18; this is the point at which the probability curves for a correct and an incorrect 

response intersect. 

Figure 4.  Item characteristic curve for a dichotomous (2-category) item. 
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For the polytomous case (Partial Credit Model; Masters, 1981), the following 

equation shows the probability that a person with a proficiency of θ will respond in 

category c rather than in any other category on item i, given item difficulty parameters 

ξi=(δi1, δi2, … δim).  
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 where m is the number of steps (number of categories-1) for the item. 

For example, for a 3-category item (with 2 steps), 
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behavior, or attitude) is needed to achieve each possible score on the item. The partial 
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location where, if one is considering just categories 0 and 1, one is equally likely of 

getting the item partially correct (where x=1) or incorrect (where x=0). Note in Figure 5 

that this is where the curve for getting a score of 0 intersects with the curve for getting a 

score of 1. Subsequent steps in difficulty are interpreted in much the same way. The 

second step difficulty, δ2,  is the proficiency required to have equal probabilities of 

getting a score of 2 or a score of 1 on the item.  

 

 

Figure 5. Category probability curves and δij values for a 3-category polytomous item. 
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When using the partial credit model we generally parameterize the difficulty of 

achieving a score of j on item i and represent it with δij. That is, δij is the proficiency level 

required to expect an equal chance of responding in category j or in category j-1 on item 

i. Alternatively, we might think of the average of the δij's as an overall item difficulty, 

and the step difficulties as each step's deviance from the average.  In looking at item 

difficulties in this way we are saying that each δij can be formulated as δi + τij, where  τij 

is the deviance from the average item difficulty for item i at step j.  Note that in this case 

the last tau parameter is equal to the negative sum of the others so that the sum of all the 

tau parameters equals zero, ∑
−

=

−=
1

1

m

k
ikim ττ . A graphical representation of this formulation 

for an item with two steps (and therefore three categories) is shown in Figure 6. 

 

Figure 6. δi, τ1 and τ2 representations for the polytomous case with 3 categories. 

Rprimi
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The rating scale model is a special case of the partial credit model in which the 

tau parameters for step j are the same for every item. That is, τ11=τ21=τ31...,  τ12=τ22=τ32..., 

etc.  In this formulation, our measurement model becomes  

 
∑ ∑

∑

= =

=

+−

+−
== m

k

k

j
ji

c

j
ji

ii cxP
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τδθ

τδθ
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where ξi=(δi, τ1, τ2,...τm-1). Again, the final tau parameter, τm, is not estimated because it 

is constrained to make the sum of all the tau parameters equal to zero. 

The different parameterization techniques of the step difficulties for partial credit 

models and the item difficulties and tau parameters for rating scale models is an 

important distinction in representing the probability equations for Scoring Engine 

measurement models. If a rating scale model is to be used, then all items that map to the 

same dimension must use the same tau parameters. These parameterization options are 

discussed in more detail in the Measurement Model Examples section. 

Although these step locations are fundamental to defining the models, we have 

found that their interpretation can lead to misunderstandings among novices. Hence, we 

have developed an alternative way to display the model. The location at which a person 

has a 50% probability of achieving a score in that category or higher is referred to as the 

Thurstonian threshold (Wilson, 2005). These locations can be identified on cumulative 

probability plots at the points where the curves intersect with the probability = .5 line, as 

shown in Figure 7. These values tend to be more interpretable than δj values because they 

identify levels where individuals are most likely to achieve specific scores. Using the 

Rprimi
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values displayed in Figure 7, the Thurstonian threshold at step 1 is -0.68, at step 2 is -

0.23, and at step 3 is 0.41. 

   

 

Figure 8 shows the same item, illustrating that a person with a proficiency located 

at 0.60 is more likely to achieve a score of 3 than a lower score, while a person with a 

proficiency located at 0.00 is more likely to achieve a score of 2 or 3 than a score of 1 or 

0. This can be determined by examining the vertical lines at logit values of 0.00 and 0.60. 

For example, at a logit value of 0.60, the vertical line intersects the probability = .5 line in 

the area where the most probable score is 3. At a logit value of 0.00, the vertical line 

intersects the probability = .5 line in the area where the most probable score is 2 or 

higher. 

Figure 7. Cumulative probability curves and Thurstonian thresholds for a 4-category polytomous 
item.  Dashed line shows probability = .5. 

0 1 2 3 
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The Random Coefficients Multinomial Logit (RCML) model (Adams & Wilson, 

1996) formulates the conditional probability of a response pattern, x, as 

 
∑

Ω∈

+′
+′

==

z

P
))(exp(

)(exp()|(
Aξbz

AξbxxX
θ

θθ , (4) 

where θ is person ability, b is the vector of response scores, A is the design matrix, ξ is 

the vector of item parameters, and Ψ is the set of all possible response vectors. 

The probability of a particular response pattern occurring is the continued product 

of the probabilities of the individual responses on an instrument when the items are 

conditionally independent. When the items are not conditionally independent, item 

bundles can be constructed to comply with the assumption of item independence in Rasch 

models (Hoskens & De Boeck, 1997; Wang, Wilson & Cheng, 2000; Wilson & Adams, 

1995). Item bundles are described in more detail in Examples 4, 7, and 8 in the 

Measurement Models Examples section.  

Figure 8. Cumulative probability curves and Thurstonian thresholds for a 4-category polytomous 
item. 
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The measurement models described thus far are all univariate; they measure one 

construct, or dimension. The types of assessment models one wishes to measure are 

frequently more complex than this because they involve several aspects of knowledge or 

proficiency that work together to influence the responses and behaviors observed in 

respondents. The multidimensional RCML model (MRCML; Adams, Wilson & Wang, 

1997) allows us to construct response probabilities and proficiency estimates across 

multiple dimensions of knowledge, behavior, or attitude.  

MRCML  Model 
The MRCML family of measurement models uses two matrices to define the 

many different measurement models in the family: A scoring matrix, B,  that represents 

the relationships between items (the rows) and dimensions (the columns); and a design 

matrix, A, that represents the relationships between items (the rows) and the model 

parameters (the columns), such as item difficulties, step difficulties, etc. 

The general MRCML formulation for the probability of a response pattern, x, to 

an item is  

 [ ]
[ ]∑

Ω∈

−′
−′

=

z
AξBθz

AξBθxθ|ξx;
)(exp

)(exp)(P  (5) 

where θ is the vector of specified proficiency levels on each dimension, ξ is the vector of 

item parameters, and Ω is the set of all possible response patterns. We use z to denote a 

pattern coming from the full set of response patterns while x denotes the response pattern 

of interest. The response pattern, x, is comprised of vectors for each item with one 

element in the vector for each item category, x = {x1, x2, ..., xI} = {x11, x12, ..., x1m1, x21, 

x22, ..., x2m2, ..., xImI} for mi = number of categories for item i, and I = number of items. 

Rprimi
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Note that in this formulation the item parameters, ξ, are considered known and 

conditioned on θ.  

Figure 9 shows an example for how A and B might be constructed for a single 3-

category item that is an indicator of one dimension. Note that the coefficients for θ are 

collected in the scoring matrix and the coefficients for the δs are collected in the design 

matrix. There are two columns in the design matrix because there are two parameters for 

the item, the two steps δi1 and δi2; the first column is associated with δi1 and the second 

with δi2. There is only one column in the scoring matrix because this is a unidimensional 

example. In a multidimensional example there would be a column for each dimension. 

The A and B matrices will always have an equal number of rows, with one row for each 

response category in each item. Note that there will always be more than one item in a 

given assessment context, so both A and B will usually be larger than shown in this small 

example. 
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When an assessment is intended to measure multiple dimensions, individual items 

may measure a single dimension or multiple dimensions. As shown in Figure 10, we refer 

to the case in which each response category for an item provides evidence about a single 

dimension as between-item multidimensionality and the case in which a single response 

category provides evidence about multiple dimensions as within-item 

multidimensionality.  

Note the patterns in the numerators for the series of equations for the response categories of a single item. 
For example, in the partial credit case with a 3-category item: 
 

P(x=0): exp(0θ – 0) = exp(0) = 1 
 

P(x=1): exp(1θ – 1δi1) = exp (θ − δi1) 
 

P(x=2): exp(2θ – (1δi1 + 1δi2)) = exp (2θ – (δi1 + δi2)) 
 
The θ coefficients comprise the entries in a Scoring Matrix, B: 
 
















=

2
1
0

B  

 
The δ coefficients comprise the entries in a Design Matrix, A: 
 
















=

11
01
00

A  , 

where column 1 represents the δi1 coefficients and column 2 represents the δi2 coefficients. 

Figure 9. Representing probability equations with scoring and design matrices. 
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Take, for example, the case of an assessment comprised of three dichotomous 

items in which the first two items are indicators of the first dimension and the third item 

is an indicator of the second dimension (i.e., between-item multidimensionality). The 

probability of a response pattern of 1, 0, and 1 on the items (i.e., correct responses on 

items 1 and 3, and an incorrect response on item 2) is computed from the following: 

 

Figure 10.   Between-item and within-item multidimensionality. 

A B C
Latent 
Dimensions 

Items 1 2 3 4 6 

Between-Item Multidimensionality 

A B C
Latent 
Dimensions 

Items 1 2 3 4 5 6 

Within-Item Multidimensionality 

5 
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Thus, [ ]
[ ]∑

Ω∈

−′
−+−

=

z
AξBθz

θ|ξx;
)(exp

)()(exp)( 3211 δθδθP . Note that x is a vector with one element per 

item-category combination, B is the scoring matrix with one column per dimension and 

two rows per item, A is the design matrix with one column per item (no step parameters 

for dichotomous items), θ is a vector with one element per dimension (i.e., the same 

number of elements as columns in B), and ξ is a vector with one element per item 

parameter (i.e., the same number of elements as columns in A). 

Through MRCML modeling and a flexible model specification structure, the 

Scoring Engine accommodates assessments that measure multiple aspects of proficiency 

and which may have item dependencies. The following Measurement Model Examples 

section elaborates on a range of models, from simple to complex, that can be specified for 

the Scoring Engine. 
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Measurement Model Examples  
The MRCML literature generally considers constructing scoring and design 

matrices to represent an entire assessment. The Scoring Engine, on the other hand, 

expects measurement models to be constructed at the item level. This approach 

encourages reuse of components with similar measurement features. The Scoring Engine 

constructs a complete assessment measurement model from these individual item-level 

models. A series of examples demonstrating how one might construct the associated 

scoring and design matrices follows. Note that examples 1, 2, 3, 5 and 6 assume that each 

response is independent of any other responses on the assessment, while examples 4, 7, 

and 8 address issues of conditional dependencies and item bundling. For some examples, 

both item-oriented matrices and assessment-oriented matrices are shown to assist the 

reader in differentiating the approach used by the Scoring Engine from that used by 

assessment-oriented MRCML programs such as ConQuest (Adams, Wu & Wilson, 2005) 

and GradeMap (Kennedy, Wilson & Draney, 2005). 

The Scoring Engine computes student proficiencies using two methods: expected 

a posteriori (EAP) and maximum likelihood estimation (MLE). The EAP is a Bayesian 

estimation procedure using both the respondents’ scores and the distribution of the 

respondents, while the MLE approach uses only the respondents’ scores. To estimate a 

respondent’s proficiency from his or her responses on an assessment, we use a 

formulation that evaluates the probability of a person with a known ability responding in 

each category to an item with known difficulty parameters. The basis of these 

computations is the estimated item response model for the items. 

Rprimi
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Unidimensional Models 
In addition to the scoring and design matrices described above, the Scoring 

Engine requires calibrated item parameters to compute response probabilities. These are 

provided as vectors in which the number of elements is equal to the number of columns 

in the design matrix. The population parameters must also be defined. A mean vector and 

a covariance matrix are used to represent these values. For a unidimensional model, the 

mean vector contains a single value and the variance-covariance matrix contains only the 

variance. 

Unidimensional Means Vector: 
 

 D1 
 [ ]652.0  

Unidimensional Covariance Matrix: 
 

  D1 
 D1 [ ]954.0  

1. A Unidimensional Dichotomous model. 
This model is useful for representing responses that are either correct or incorrect 

and that measure only one dimension. Examples include making a selection from a list, 

responding to a true/false or multiple choice question, and fill-in-the-blank items. 

Item Scoring Matrix (one dimension, so one column): 

  D1 
 Category 1 
 Category 2 








1
0

 

 
Item Design Matrix (one item difficulty needed, so one column): 

  δ1 
 Category 1 
 Category 2 








1
0
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Item Calibrated Parameters Vector: 
  δ1 
 Item difficulty [ ]05.1  

 
In the case of an assessment with 10 dichotomous items, the associated 

assessment matrices would have the form1: 

Assessment Scoring Matrix: 
 D1 

item 1, category 1 

item 1, category 2 

item 2, category 1 

item 2, category 2 

item 3, category 1 

item 3, category 2 

item 4, category 1 

item 4, category 2 

item 5, category 1 

item 5, category 2 

item 6, category 1 

item 6, category 2 

item 7, category 1 

item 7, category 2 

item 8, category 1 

item 8, category 2 

item 9, category 1 

item 9, category 2 

item 10, category 1 

item 10, category 2 





















































1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

 
 

Assessment Design Matrix: 
 δ1   δ2   δ3   δ4   δ5   δ6   δ7   δ8   δ9  δ10 

item 1, category 1 

item 1, category 2 

item 2, category 1 

item 2, category 2 

item 3, category 1 

item 3, category 2 

item 4, category 1 

item 4, category 2 

item 5, category 1 

item 5, category 2 

item 6, category 1 

item 6, category 2 

item 7, category 1 

item 7, category 2 

item 8, category 1 

item 8, category 2 

item 9, category 1 

item 9, category 2 

item 10, category 1 

item 10, category 2 





















































1000000000
0000000000
0100000000
0000000000
0010000000
0000000000
0001000000
0000000000
0000100000
0000000000
0000010000
0000000000
0000001000
0000000000
0000000100
0000000000
0000000010
0000000000
0000000001
0000000000

 

2. Unidimensional Partial Credit model. 
This model is used to represent responses that can be scored at more than two 

levels. A scoring rubric is usually required to describe what a score at each level means 

relative to the construct being measured. Essay questions are typically scored using this 

approach, with scores ranging from 0 to 10, for example. 

The scoring and design matrices below represent an item with four categories. In 

this scoring matrix, a response in the third category is represented by a score of 2. Note 

                                                 
1 Note that this design matrix does not express the constraint which may be needed to identify the model. 
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that the response data sent to the Scoring Engine indicates which category the response is 

in, using integral values beginning at 0. Thus, a response in the second category is sent to 

the Scoring Engine as the value 1. The response categories are always positive integers. 

For simple models, such as that shown below, it is quite common for the response 

category value to be the same as the score value. However, it is permissible for the 

scoring matrix to include negative or fractional, or real, values. 

Item Scoring Matrix (one dimension, so one column): 
  D1 
 Category 1 

 Category 2 

 Category 3 

 Category 4 


















3
2
1
0

 

 

Partial Credit Item Design Matrix: 

(four categories means three steps, so 3 columns) 

  δ1  δ2  δ3 
 Category 1 

 Category 2 

 Category 3 

 Category 4 


















111
011
001
000

 

 

In this design matrix, the difficulty of achieving a response in the third category is 

dependent upon the difficulty of advancing from the first category to the second category 

(the first column), and the difficulty in advancing from the second category to the third 

category (the second column). That is, the difficulty of achieving a response in the third 

category is conditioned on being able to earn the lower scores also. This interpretation 

requires scores to be hierarchically ordered such that each score represents a higher level 
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of proficiency than the score before. Just as for scoring matrices, entries in the design 

matrix may also be negative and may be fractional, or real, values. 

Item Calibrated Parameters Vector: 
 

 δ1        δ2      δ3 
 [ ]86.25.35.1  

  

Note that the number of elements in the calibrated parameters vector is equal to 

the number of columns in the design matrix. 

For an assessment with five items in which items 1 through 3 have five categories 

and items 4 and 5 have three categories, the assessment matrices would take the form2: 

Assess. Scoring Matrix: 
 D1 
item 1, category 1 

item 1, category 2 
item 1, category 3 
item 1, category 4 
item 1, category 5 
item 2, category 1 

item 2, category 2 
item 2, category 3 
item 2, category 4 
item 2, category 5 
item 3, category 1 

item 3, category 2 
item 3, category 3 
item 3, category 4 
item 3, category 5 
item 4, category 1 

item 4, category 2 
item 4, category 3 
item 5, category 1 

item 5, category 2 
item 5, category 3 




















































2
1
0
2
1
0
4
3
2
1
0
4
3
2
1
0
4
3
2
1
0

 

 

Assessment Design Matrix: 
    δ11 δ12 δ13  δ14  δ21  δ22  δ23 δ24  δ31 δ32  δ33  δ34 δ41 δ42  δ51 δ52 
item 1, category 1 

item 1, category 2 
item 1, category 3 
item 1, category 4 
item 1, category 5 
item 2, category 1 

item 2, category 2 
item 2, category 3 
item 2, category 4 
item 2, category 5 
item 3, category 1 

item 3, category 2 
item 3, category 3 
item 3, category 4 
item 3, category 5 
item 4, category 1 

item 4, category 2 
item 4, category 3 
item 5, category 1 

item 5, category 2 
item 5, category 3 




















































1100000000000000
0100000000000000
0000000000000000
0011000000000000
0001000000000000
0000000000000000
0000111100000000
0000011100000000
0000001100000000
0000000100000000
0000000000000000
0000000011110000
0000000001110000
0000000000110000
0000000000010000
0000000000000000
0000000000001111
0000000000000111
0000000000000011
0000000000000001
0000000000000000

 

3. Unidimensional Rating Scale model. 
This is similar to the unidimensional partial credit model except that the scoring 

rubric must be consistent with having the same tau parameters for all items on the 

                                                 
2 Note that, as above, no constraints are built into this example. 
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assessment; we assume that the scoring rubric performs in the same way for all items. 

Rating scale models are often used for questionnaires and surveys where a Likert-type set 

of options has been used (e.g., strongly agree, agree, disagree, strongly disagree). The 

following scoring matrix could be used for a rating scale item with five categories. In the 

example below, a response in the second category is represented by a score of 1. 

Item Scoring Matrix (one dimension, so one column): 

  D1 
 Category 1 

 Category 2 

 Category 3 

 Category 4 

 Category 5 





















4
3
2
1
0

 

 
For a single item, the measurement model could be constructed in the same 

manner as for the partial credit model. By convention, however, we parameterize the item 

difficulties differently in the rating scale model (as (δ + τ) values), so we construct the 

design matrix differently also (the need for this is more apparent for an entire assessment 

than for a single item). 

Preliminary Item Design Matrix (average difficulty, δi,  and four step 

difficulties, τ1, τ2, τ3, and τ4, so 5 columns): 

  δ   τ1    τ2    τ3    τ4 
 Category 1 

 Category 2 

 Category 3 

 Category 4 

 Category 5 





















11114
01113
00112
00011
00000

 

 

With this design matrix, the difficulty of achieving a response in the third 

category is computed from the average difficulty of the item (the first column), the 
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deviance from the average difficulty to get a response in the second category rather than 

the first (the second column), and the deviance from the average difficulty to get a 

response in the third category rather than the second (the third column). These tau 

parameters have a different interpretation, and are calibrated differently, from the step 

parameters in the partial credit model, so the formulation of the design matrix looks 

different from that for the partial credit model.  

Note that the total difficulty of getting a response in the third category is: 

 average item difficulty + difficulty in going from a category 1 response to a category 2 response 

+ average item difficulty + difficulty in going from a category 2 response to a category 3 response 
= 2*( average item difficulty)  

 + difficulty in going from a category 1 response to a category 2 response 

 + difficulty in going from a category 2 response to a category 3 response 

 
In MRCML terms, the formulation is denoted as 2δi+τi1+τi2. The coefficients 2, 1, and 1 

are captured in the design matrix row denoted as “Category 3.”  

Since the sum of all the tau parameters is 0, the total difficulty of getting a 

response in the fifth category is 4δi +Στ = 4δi;  we simplify the design matrix by setting 

the tau parameters in the last row to 0. Thus, we do not have to estimate τ4, and this 

means that we need only the first four columns (i.e., the average item difficulty, δi,  and 

three step difficulties, τ1, τ2, and τ3). 

Final Rating Scale Item Design Matrix 

  δ   τ1    τ2    τ3 
 Category 1 

 Category 2 

 Category 3 

 Category 4 

 Category 5 





















0004
1113
0112
0011
0000
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Item Calibrated Parameters Vector: 

 δ          τ1         τ2           τ3 
 [ ]64.03.126.35.1−  

 

The rating scale model is considered a special case of the partial credit model. All 

items noted as Rating Scale for the Scoring Engine use the same parameter estimates for 

the tau parameters. For an assessment comprised of five rating scale items with three 

categories each, we would need the following scoring and design matrices. 

Assessment Scoring Matrix: 
 D1 
item 1, category 1 

item 1, category 2 
item 1, category 3 
item 2, category 1 

item 2, category 2 
item 2, category 3 
item 3, category 1 

item 3, category 2 
item 3, category 3 
item 4, category 1 

item 4, category 2 
item 4, category 3 
item 5, category 1 

item 5, category 2 
item 5, category 3 






































2
1
0
2
1
0
2
1
0
2
1
0
2
1
0

 

 

Assessment Design Matrix: 
    δ1 δ2   δ3   δ4   δ5   τ1   τ2 
item 1, category 1 

item 1, category 2 
item 1, category 3 
item 2, category 1 

item 2, category 2 
item 2, category 3 
item 3, category 1 

item 3, category 2 
item 3, category 3 
item 4, category 1 

item 4, category 2 
item 4, category 3 
item 5, category 1 

item 5, category 2 
item 5, category 3 






































1120000
0110000
0000000
1102000
0101000
0000000
1100200
0100100
0000000
1100020
0100010
0000000
1100002
0100001
0000000

 

 
 

Notice how the tau parameter columns have entries across different items. This is 

because these parameters are defined across different items. In this example, we have 

placed the individual average item difficulties in the design matrix first (i.e., in the 

leftmost columns), and then the shared tau parameters on the right. This is a convention, 

but is not required as long as the calibrated item parameters are in the same order as the 

columns of the associated design matrix. The reconfiguration of individual item matrices 

into assessment-level matrices is managed by the Scoring Engine. 
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4. A Simple Item Bundle example. 
When a single prompt leads to multiple responses from students it is likely that 

the responses have some conditional dependencies. For example, in the problem shown in 

Figure 3 the prompt asks students to compute the average speed, with intermediate 

responses specifying the equation and the numeric values from the prompt that are to be 

placed into the equation. If we only use the final response, conditional dependence is not 

an issue; however, if we wish to capture more of the information available about student 

thinking, we will want to retain the information from the intermediate responses, and the 

conditional dependencies must be modeled in some way. 

An item bundle (Rosenbaum, 1988) can be used to model dependencies between 

items. The bundling is implemented prior to sending the data to the Scoring Engine. First, 

individual item responses are evaluated, and then a procedure for combining the 

intermediate item responses into a new, aggregated (bundled) response is implemented. 

Only the final bundled response is transmitted to the Scoring Engine and used in 

estimating proficiencies. 

For a simple case, consider 3 dichotomous items in the bundle. One can use a 

complete model with all possible response combinations, with each mapping to a unique 

final response, or a reduced model if some of the possible response categories are not 

needed or if it makes sense to collapse some categories.  

The item bundle, rather than individual items, maps to the scoring matrix and the 

design matrix. In this example, the bundle has eight possible response patterns (the 

number of representations of three items with two categories each) represented by eight 

categories. The eight response categories for our example bundle are shown below. The 

values in the parentheses show the scores for the individual dichotomous items. 
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 Category 1 (0,0,0) 

 Category 2 (0,0,1) 

 Category 3 (0,1,0) 

 Category 4 (0,1,1) 

 Category 5 (1,0,0) 

 Category 6 (1,0,1) 

 Category 7 (1,1,0) 

 Category 8 (1,1,1) 

 

A partially ordered (i.e., we can differentiate between bundle scores of 0, 1, 2, or 

3, but not between bundle categories 2, 3 and 4 or categories 5, 6 and 7) item bundle 

scoring matrix is shown below: 

Partially Ordered Bundle Scoring Matrix: 

  D1 
 Category 1 (0,0,0) 

 Category 2 (0,0,1) 

 Category 3 (0,1,0) 

 Category 4 (0,1,1) 

 Category 5 (1,0,0) 

 Category 6 (1,0,1) 

 Category 7 (1,1,0) 

 Category 8 (1,1,1) 































3
2
2
2
1
1
1
0

 

 

Note that when using a partially ordered scoring matrix, one cannot derive the 

original responses from the score, as is possible with a fully ordered scoring matrix. 
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Partial Credit Bundle Design Matrix: 

  δ1  δ2   δ3 
 Category 1 (0,0,0) 

 Category 2 (0,0,1) 

 Category 3 (0,1,0) 

 Category 4 (0,1,1) 

 Category 5 (1,0,0) 

 Category 6 (1,0,1) 

 Category 7 (1,1,0) 

 Category 8 (1,1,1) 































111
011
011
011
001
001
001
000

 

 

This is another type of partial credit model, and the design matrix would, again, 

follow from Example 2, the Unidimensional Partial Credit Model. This design matrix (as 

shown above) could have three columns, one for each score category. Alternatively, one 

could design a saturated design matrix with a parameter for each response category. As 

shown below, a saturated design matrix would have seven columns. 

Saturated Bundle Design Matrix: 

  δ1  δ2   δ3   δ4   δ5  δ6   δ7 
 Category 1 (0,0,0) 

 Category 2 (0,0,1) 

 Category 3 (0,1,0) 

 Category 4 (0,1,1) 

 Category 5 (1,0,0) 

 Category 6 (1,0,1) 

 Category 7 (1,1,0) 

 Category 8 (1,1,1) 































1000000
0100000
0010000
0001000
0000100
0000010
0000001
0000000
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Multidimensional Models 
For multidimensional models, means are needed for each dimension and the 

complete variance-covariance matrix is needed.  

Multidimensional Means Vector: 

   D1         D2 
 [ ]865.542.0

 
Multidimensional Covariance Matrix: 

  D1         D2 
 D1 

D2 








812.0783.0
783.0260.1

 

 
 Note that this covariance matrix corresponds to the following correlation matrix: 
 
  D1         D2 
 D1 

D2 








000.1774.0
774.0000.1

 

 

5. Between-Item Multidimensional model. 
This is our first example of an assessment that measures proficiency on multiple 

dimensions, or constructs. We begin with the simple case in which each response is 

associated with just one of the dimensions. For example, some items may provide 

evidence of students’ knowledge in one area while others provide evidence about a 

different domain. The items shown in Figure 11 come from the same assessment (Songer, 

2000). 
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In this case, each item maps to a single dimension, so representing a single item is 

the same as for the Unidimensional Partial Credit Model (Example 2). However, when 

we construct an assessment that measures proficiency on two or more dimensions, we 

need to relate individual items to specific dimensions. In this example, we have an 

assessment with three items. Items 1 and 17 have two categories, while item 7 has three 

categories. Items 1 and 7 map to the first dimension, biodiversity, and item 17 maps to 

the second dimension, simple machines. The scoring and design matrices below represent 

an assessment comprised of these three items. 

   Item 1 
 
   Item 2 
 
   Item 3 

 

Figure 11. Example of items measuring different constructs. 

D1 

D2 

1.  Some animals change color with the seasons. The snowshoe rabbit is brown during the warm 
seasons, what color would you expect its coat to be in the winter?  

A.   tan 
B.   black 
C.   white 
D.   a mixture of colors 

 
7.  Given the food chain: Grain  Mice  Snakes.  What will happen when there is a lot of grain? 
 
      When there is a lot of grain: 
 

17.  Jesse learned that she needs to apply a larger force than the frictional force to move an object. 
When Jesse applied 5 N to a brick on the desk, the brick did not move. With 10 N the brick 
moved. Which of the following can explain Jesse's experiment? 

 
 A.  5 N is larger than the frictional force on the brick. 
 B.  5 N is smaller than the frictional force on the brick. 
 C.  10 N is the same as the frictional force on the brick. 
   D.  10 N is smaller than the frictional force on the brick 
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Assessment Scoring Matrix: 
 D1 D2 
Item 1, category 1 

Item 1, category 2 

Item 7, category 1 

Item 7, category 2 

Item 7, category 3 

Item 17, category 1 

Item 17, category 2 



























10
00
02
01
00
01
00

 

Assessment Design Matrix: 
    δ11   δ 21   δ22   δ31  
Item 1, category 1 

Item 1, category 2 

Item 7, category 1 

Item 7, category 2 

Item 7, category 3 

Item 17, category 1 

Item 17, category 2 



























1000
0000
0110
0010
0000
0001
0000

 

 

6. Within-Item Multidimensional Partial Credit model. 
This model differs from Example 5 in that a single response can be associated 

with more than one dimension. For example, a single response to an open ended problem 

may provide evidence of a respondent’s content knowledge and also his or her ability to 

formulate an explanation. One way to evaluate this type of item is to give two scores, one 

for the content construct and one for the explanations construct. An example of this type 

of item from the BioKIDS curriculum (Songer, 2000) is shown in Figure 12.  
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In this example, the selection of the zone is considered an indicator of content 

knowledge (in this case, biodiversity) and the explanation is an indicator of knowledge 

about building an explanation. A single item provides evidence of the respondent’s 

location on both constructs. 

Each dimension may have a different number of categories. For example, content 

knowledge may have two categories (correct and incorrect) and building explanations 

may have three categories, resulting in 6 unique combinations of responses on the item 

overall. 

Using the graph below, predict which zone most likely has a tree in it and give one reason 
to support your prediction. 
 

Schoolyard Animals
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I think that zone ____________ has a tree in it because _______________________ 
 
_________________________________________________________. 

Figure 12.  Example of within-item multidimensionality. 
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The first category of the overall item represents the situation in which the 

respondent had a response in the first category on the first dimension and a response in 

the first category on the second dimension. We construct the complete set of overall item 

categories by building permutations on the combinations of responses on the two 

dimensions. For proficiency estimation purposes we do not consider the initial item 

response categories again; only the overall response category information is sent to the 

Scoring Engine. 

 
   Item 1 
 

 

Final Item Scoring Matrix: Saturated Item Design Matrix: 
  D1  D2 
 Category 1 (0,0) 

 Category 2 (0,1) 

 Category 3 (0,2) 

 Category 4 (1,0) 

 Category 5 (1,1) 

 Category 6 (1,2) 

























21
11
01
20
10
00

 

 

 δ1   δ2   δ3   δ4   δ5 
 
 
 
 
 
 


























10000
01000
00100
00010
00001
00000

 

 
 

There are a number of options for generating design matrices for this example. 

The simplest is to assume the saturated model, as shown above. Another straightforward 

one is to assume no interaction effects between the difficulty of the task and the 

dimensions and to treat the new item response as a normal partial credit item with three 

steps. 

 

D1 

D2 
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Item design matrix:  

  δ1  δ2   δ3 
 Category 1 (0,0) 

 Category 2 (0,1) 

 Category 3 (0,2) 

 Category 4 (1,0) 

 Category 5 (1,1) 

 Category 6 (1,2) 

























111
011
001
011
001
000

 

 

Another approach is to create parameters associated with the constructs. For 

example, a response in the second category may be associated with the difficulty of 

achieving a response at step 1 on the second dimension for the aggregate item, denoted 

δD2,1 in the design matrix below. In this case, the design matrix parameters simply reflect 

the combined difficulty of getting the two response categories, one for each dimension. 

For example, to achieve an overall response in the third category, the respondent needs 

enough ability to achieve at the third category level on the second dimension (δD2,1 + 

δD2,2) but no incremental ability for the first dimension is required.  

Item design matrix for parameters associated with dimensions: 

  δD1,1 δD2,1 δD2,2 
 Category 1 (0,0) 

 Category 2 (0,1) 

 Category 3 (0,2) 

 Category 4 (1,0) 

 Category 5 (1,1) 

 Category 6 (1,2) 

























111
011
001
110
010
000

 

 

In some cases, the design matrix may need to change to reflect a more complex 

conceptualization of item difficulties that includes interaction effects between multiple 
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dimensions. For example, the first item parameter may represent the difficulty of the first 

dimension, conditioned on a response in the first category on the second dimension. The 

second parameter may represent the difficulty of getting a response in the second 

category on the second dimension, conditioned on a response in the first category on the 

first dimension. A complete discussion of parameterization options is beyond the scope 

of this report. 

Determining whether item responses are dependent or independent usually 

requires empirical analysis. An MRCML analysis can be useful in determining which 

model provides the best fit to the data. Clearly, the manner in which items are calibrated 

must be reflected in the scoring and design matrices when proficiency estimates are 

subsequently requested of the Scoring Engine. 

Similarly, the selection of between-item or within-item multidimensionality 

should also be empirically confirmed. While a task designer may have a hypothesis about 

how various constructs work together and whether responses are conditionally dependent 

or independent, an analysis of alternative models may provide additional information that 

leads to new insights about the processes involved in performance of the task. 

7. Between-item multidimensional bundle example: Bundle is 
multidimensional with each component item mapping to a single 
dimension. 

 
In some cases, individual responses are conditionally dependent and are also 

indicators of different constructs. For example, in an interactive assessment of physics 

knowledge, students are required to select an appropriate equation for solving a distance 

problem (item 1), place the correct values into the equation (item 2), and then compute 
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the total distance traveled (item 3). An example of this type of problem is shown in 

Figure 13. 

 

Clearly, the three item responses are conditionally dependent because selecting 

the wrong equation will usually lead to the wrong final answer, as will selecting the 

wrong values for the variables in the equation. However, selecting the equation and 

choosing the correct values for the variables provide evidence about the respondent’s 

knowledge of physics while solving the equation provides evidence of mathematical 

ability. In this example, items 1 and 2 are indicators of the physics construct (the first 

dimension) and item 3 is an indicator of the mathematics construct (the second 

dimension).  First, the three items are evaluated individually as correct or incorrect; or, as 

a response in the first category or a response in the second category. Then, the 

appropriate bundle category is determined from the pattern of responses on the three 

Jeremy went from his home to the library, then to the store, and then to his friend’s house. 
How far did he go? 
 
 
 
 
 
    0                                                       500                                                   1000m                             
 
a) From the equation sheet, select the equation you need to solve the problem. Write it below. 
 
 
b) Use the equation to calculate the distance Jeremy traveled. Show your work below: 
 
 
 
c) Write how far Jeremy traveled, including the units. ___________________ 
 

Figure 13. A between-item multidimensional bundle. 

 
Home Library Friend’s House

 
Store 
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items. Note that this example is similar to Example 5, but here the items are treated as 

conditionally dependent. 

   
Item 1 
 

   Item 2 
 
   Item 3  
 

Bundle Scoring Matrix: 
  D1 D2 
 Category 1 (0,0,0) 

 Category 2 (0,0,1) 

 Category 3 (0,1,0) 

 Category 4 (0,1,1) 

 Category 5 (1,0,0) 

 Category 6 (1,0,1) 

 Category 7 (1,1,0) 

 Category 8 (1,1,1) 































12
02
11
01
11
01
10
00

 

 

The design matrix could follow any of the forms suggested in Example 5 above. 

8. Within-item multidimensional bundle: Bundle is multidimensional 
with individual component items mapping to multiple dimensions. 

 
If instead of associating each item to one construct we were to associate one item 

to multiple constructs in Example 7, we would need to construct a within-item 

multidimensional bundle. For example, we may believe that selecting the correct values 

to place into the equation (from Example 7) requires both physics knowledge and 

mathematical ability. In that case, item 1 is an indicator of the physics dimension, item 3 

is an indicator of the mathematics dimension, and item 2 is an indicator of both physics 

and mathematics. 

D1 

D2 

Bundle 
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  Item 1 

   Item 2 
 
   Item 3 
 

 

Bundle Scoring Matrix: 

  D1 D2  
 Category 1 (0,0,0)  

 Category 2 (0,0,1) from item 3 only 

 Category 3 (0,1,0) from item 2 only 

 Category 4 (0,1,1) from items 2 and 3 

 Category 5 (1,0,0) from item 1 only 
 Category 6 (1,0,1) from items 1 and 3 
 Category 7 (1,1,0) from items 1 and 2 
 Category 8 (1,1,1) 
































22
12
11
01
21
11
10
00

 

from all items 

 

The design matrix could follow any of the forms suggested in Example 6 above. 

Conclusions 
These examples show how a number of assessment tasks could be modeled for 

MRCML estimation. The BEAR Scoring Engine provides a mechanism for estimating 

respondent proficiencies from assessment data with tasks ranging from simple true-false 

questions to complex tasks involving a series of constructed responses that provide 

evidence of multiple constructs. Assessment developers can use the Scoring Engine 

software to develop more sophisticated interpretations of respondents’ knowledge, 

behavior, or attitude than commonly produced using classical test theory or traditional 

IRT approaches. 

 

D1 

D2 

Bundle 
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