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A unidimensional latent trait model for responses scored in two or more ordered categories is 
developed. This "Partial Credit" model is a member of the family of latent trait models which share 
the property of parameter separability and so permit "specifically objective" comparisons of per- 
sons and items. The model can be viewed as an extension of Andrich's Rating Scale model to 
situations in which ordered response alternatives are free to vary in number and structure from item 
to item. The difference between the parameters in this model and the "category boundaries" in 
Samejima's Graded Response model is demonstrated. An unconditional maximum likelihood pro- 
cedure for estimating the model parameters is developed. 
Key words: latent trait, Rasch model, ordered categories, partial credit. 

l. Introduction 

In 1960 Rasch introduced a model for the analysis ofdichotomously-scored responses. 
When data fit this model, item parameters can be estimated independently of the character- 
istics of the calibrating sample and person parameters can be freed from the difficulties of 
the items taken [Rasch, 1960, 1977]. Since the introduction of this model, other Rasch 
models which share this potential have been developed for other observation formats. 
These include models for the analysis of counts [Rasch, 1960], repeated trials [Rasch, Note  
1 ; Andrich, 1978a] and rating scales [Andrich, 1978b]. 

In this paper a Rasch model is developed for the analysis of partial credit data. In 
common with all Rasch models,, the parameters in this "Partial Credit" model appear  
additively in the exponent of the model and so can be separated and estimated indepen- 
dently of each other. This separability results in sufficient statistics for the model par- 
ameters and makes possible objective comparisons of persons and items from graded 
responses. 

Section 2 distinguishes partial credit scoring from three other sources of ordered 
category data:  repeated trials, counts and rating scales. Section 3 summarizes the concept of 
parameter  separability and discusses its implications for measurement. Section 4 reviews 
the traditional "category boundaries" approach to the analysis of ordered category data 
used by Thurstone [Edwards & Thurstone, 1952] and Samejima [1969]. Section 5 develops 
the Partial Credit model and Section 6 describes its relationship to Andrich's [1978b] 
Rating Scale model. Section 7 gives an unconditional maximum likelihood procedure for 
estimating the parameters in the Partial Credit model. Section 8 applies the model to the 
analysis of a prekindergarten screening test. 

2. Observation Formats 

Observation formats which record ordered levels of response can be classified into four 
general types: 
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O modelo de créditos parciais

descriptions along the ability scale are associated with the “item locations” on the
scale.

The Derivation of the Partial Credit Model

It will be helpful to first describe the derivation of the PCM to clarify the underlying
assumptions of a PCM. Masters (1982) derived the PCM by applying the
dichotomous Rasch model to adjacent pairs of score categories. That is, given that a
student’s score is k-1 or k, the probability of being in score category k rather than in
category k-1 has the form of the simple Rasch model.

Consider a 3-category partial credit item, with 0, 1 and 2 as possible scores for
the item.

The PCM specifies that, while conditioning on scoring a 0 or 1 (i.e., we know
the score is either 0 or 1), the probability of a score of zero (X = 0) and the
probability of a score of 1 (X = 1) are given by

p0=0;1 ¼ Pr X ¼ 0=X ¼ 0 or X ¼ 1ð Þ ¼ Pr X ¼ 0ð Þ
Pr X ¼ 0ð Þþ Pr X ¼ 1ð Þ

¼ 1
1þ exp h% d1ð Þ

ð9:1Þ

p1=0;1 ¼ Pr X ¼ 1=X ¼ 0 or X ¼ 1ð Þ ¼ Pr X ¼ 1ð Þ
Pr X ¼ 0ð Þþ Pr X ¼ 1ð Þ

¼ exp h% d1ð Þ
1þ exp h% d1ð Þ

ð9:2Þ

Equations (9.1) and (9.2) are in the form of the dichotomous Rasch probabilities.
Similarly, conditional on scoring a 1 or 2, the probability of X = 1 and the

probability of X = 2 are given by

p1=1;2 ¼ Pr X ¼ 1=X ¼ 1 or X ¼ 2ð Þ ¼ Pr X ¼ 1ð Þ
Pr X ¼ 1ð Þþ Pr X ¼ 2ð Þ

¼ 1
1þ exp h% d2ð Þ

ð9:3Þ

p2=1;2 ¼ Pr X ¼ 2=X ¼ 1 or X ¼ 2ð Þ ¼ Pr X ¼ 2ð Þ
Pr X ¼ 1ð Þþ Pr X ¼ 2ð Þ

¼
exp h% d2ð Þ

1þ exp h% d2ð Þ ð9:4Þ

Equations (9.3) and (9.4) are also in the form of the dichotomous Rasch
probabilities.

160 9 Partial Credit Model
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When an item response has only two possible values, correct or incorrect (e.g., in 

an educational context), the item difficulty is an expression of how much ability a person 

needs to give a correct answer. By convention, we describe the item difficulty as the 

proficiency level where the respondent is equally likely to get a correct or incorrect 

response (that is, both probabilities are .5). In Figure 4, for example, the item difficulty is 

-0.18; this is the point at which the probability curves for a correct and an incorrect 

response intersect. 

Figure 4.  Item characteristic curve for a dichotomous (2-category) item. 
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PCM Probabilities for All Response Categories

While the derivation of the PCM is based on specifying probabilities for adjacent
score categories, the probability for each score, when all score categories are
considered collectively, can be derived. The following gives the probability of each
score category for a 3-category (0, 1, 2) PCM.

p0 ¼ Pr X ¼ 0ð Þ ¼ 1
1þ exp h% d1ð Þþ exp 2h% d1 þ d2ð Þð Þ ð9:5Þ

p1 ¼ Pr X ¼ 1ð Þ ¼ exp h% d1ð Þ
1þ exp h% d1ð Þþ exp 2h% d1 þ d2ð Þð Þ

ð9:6Þ

p2 ¼ Pr X ¼ 2ð Þ ¼ exp 2h% d1þ d2ð Þð Þ
1þ exp h% d1ð Þþ exp 2h% d1 þ d2ð Þð Þ ð9:7Þ

More generally, if item i is a polytomous item with score categories 0, 1, 2, …,
mi, the probability of person n scoring x on item i is given by

Pr Xni ¼ xð Þ ¼ exp
Px

k¼0 hn % dikð Þ
Pmi

h¼0 exp
Ph

k¼0 hn % dikð Þ
ð9:8Þ

where we define exp
P0

k¼0 hn % dikð Þ ¼ 1, and hence when the score is 0, the
numerator of Eq. (9.8) is 1. The summation index k refers to score categories.

Note that the number of dk parameters is one less than the number of response
categories. For example, if there are three response categories, 0, 1 and 2, then there
are two d parameters, d1 and d2. In the same way as for dichotomous items, when
there are two response categories (e.g., correct and incorrect), there is one item
difficulty parameter, d.

Some Observations

Dichotomous Rasch Model Is a Special Case

Note that the simple dichotomous Rasch model is a special case of the PCM. That
is, when an item has two response categories (dichotomous), Eq. (9.8) is the
dichotomous Rasch model as shown in Chap. 7. For this reason, software programs
that can fit the PCM can generally fit the dichotomous model without special
instructions to distinguish between the dichotomous model and PCM. Dichotomous
and partial credit items can generally be “mixed” in one analysis.

PCM Probabilities for All Response Categories 161
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location where, if one is considering just categories 0 and 1, one is equally likely of 

getting the item partially correct (where x=1) or incorrect (where x=0). Note in Figure 5 

that this is where the curve for getting a score of 0 intersects with the curve for getting a 

score of 1. Subsequent steps in difficulty are interpreted in much the same way. The 

second step difficulty, G2,  is the proficiency required to have equal probabilities of 

getting a score of 2 or a score of 1 on the item.  

 

 

Figure 5. Category probability curves and Gij values for a 3-category polytomous item. 

42 

Figure 17  Theoretical Item Characteristic Curves for a 3-category Partial Credit Item 

From Figure 17, it can be seen that as ability increases, the probability of being in a 
higher score category also increases. 

Graphical interpretation of the delta (! ) parameters 

Figure 18  Graphical representations of the delta (! ) parameters 

Mathematically, it can be shown that the delta (! ) parameters in Eq. (5.1) to (5.4) 

are the abilities at which adjacent ICCs intersect.  That is, k!  is the point at which the 

Category 0 

Category 1 

Category 2 

Score 0 

Score 1 

Score 2 

1!
2!

Wu, M. & Adams, R. (2007). Applying the Rasch model to psycho-social measurement: A practical approach. 
Educational Measurement Solutions, Melbourne. 
_____________________________________________________________________________________________________

Most likely single score category 
mas .. nao >.50
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Figure 19  ICC for PCM where the delta parameters are dis-ordered 

Figure 19 shows that the probability curve for the middle category, score 1, is very 
flat, indicating that there are few students who are likely to score 1.  On might say that 
score 1 is not a very “popular” category.  In this case, the interpretation of the ICCs 
becomes more difficult, as score 1 is never the most likely single category for any 

ability level, and that the parameters 1!  and 2!  are not ordered ( 1!  > 2! ).  This 

phenomenon was one disadvantage of using the delta (! ) parameters to interpret 

item responses in relation to ability. 

Linking the graphical interpretation of ! to the derivation of PCM 

Masters and Wright (1997) pointed out that the dis-ordering of the delta (! )

parameters was not necessarily an indication of a problematic item, since the 
derivation of the partial credit model did not place any restriction on the ordering of 
item parameters, ! .   More specifically, the derivation of the PCM states that, 

considering only students in score categories k-1 and k, the probability of being in 
category k follows the Rasch model.  Figure 20 shows an example ICC for the 
conditional probability of score category k, given the score is either k-1 or k. 

Score 0 

Score 1 

Score 2 

1!2!

Wu, M. & Adams, R. (2007). Applying the Rasch model to psycho-social measurement: A practical approach. 
Educational Measurement Solutions, Melbourne. 
_____________________________________________________________________________________________________



category. That is, few students who successfully conceptualised the method will
make a computational mistake. As an example, Fig. 9.3 shows a mathematics word
problem that requires formulation of an equation and then carrying out computation
to obtain the result. The item statistics in Fig. 9.3 show that only 4% of students
who used the correct method but made a computational error (score of 1).
Figure 9.4 shows the corresponding item characteristic curves. Category 1 curve is
very flat as very few students are in this response category, so that the probability of
being in this response category is very low. As category 1 is never the most likely
response category across the ability range, dis-ordered d occurs (d1[ d2). In this
example, d1 is 1.85 and d2 is −2.69.

Notice that dis-ordering of the thresholds indicates that a middle response cat-
egory has few respondents. This in itself is not an indication that the response
categories ought to be combined. In later sections of this chapter, the issue of

Item 5 - pharm
In the Pharmochem company, there are 57 employees. 
Each employee speaks either German or English, or both. 
25 employees can speak German and 48 employees can 
speak English. How many employees can speak both 
German and English?    Show how you found your 
answer.

Item analysis (Item 5 – pharm)
-------------------------------------------
Response Score Count   % of tot  Pt Bis

-------------------------------------------
16*      2    293      61.68    0.43

comp err   1     18       3.79    0.01
Other      0    117      24.63   -0.36

Scoring guide: 
Fully correct answer was given a score of 2. For 
responses with correct method but incorrect 
computation, a score of 1 was awarded.
*Correct answer

Fig. 9.3 Item statistics for a partial credit scoring mathematics item

Fig. 9.4 ICC for a partial credit mathematics item with dis-ordered thresholds

166 9 Partial Credit Model
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Figure 22  ICC for an essay marking criterion, “Cohesion”, using PCM on a 6-point 
scale 

Tau’s and Delta Dot 

A variation of the parameterisation of the PCM is the use of ! ’s (tau’s) and "#  (delta 

dot).  Mathematically, the delta ( ik# ) parameters in Eq. (5.8) can be re-written in the 

following way: 

Using the notations as in Eq. (5.8) but dropping the index i for simplicity, let  

m
im

k
k$

%
" %

1

##  (5.9) 

That is, "#  is the average of the delta ( k# ) parameters. 

Define k!  as the difference between  "#  and k# .  That is,  

kk ##! &% "  (5.10) 

Graphically, the relationships between k! , "#  and k#  are illustrated in Figure 23 

(Adams, 2002). 

Wu, M. & Adams, R. (2007). Applying the Rasch model to psycho-social measurement: A practical approach. 
Educational Measurement Solutions, Melbourne. 
_____________________________________________________________________________________________________

collapsing categories is discussed. Further, we cannot stress strongly enough that
the dis-ordering of the thresholds does not mean that the scoring needs to be
reversed. That is, if d1 [ d2, it does not mean that score 1 should be labelled 2, and
score 2 should be labelled 1.

In contrast to the above example, when the PCM is applied to holistic scoring
rubrics such as those used for essay marking, the problem of dis-ordering of d is
less likely to occur. Figure 9.5 shows the ICC of a partial credit scoring essay item.

Tau’s and Delta Dot

A variation of the parameterisation of the PCM is the use of s’s (tau’s) and d! (delta
dot). Mathematically, the delta (dik) parameters in Eq. (9.8) can be re-written in the
following way:

Using the notations as in Eq. (9.8) but dropping the index i for simplicity, let

d! ¼
Xm

k¼ 1

dk=m ð9:9Þ

where m is the maximum score. That is, the total number of response categories of
an item is m þ 1.

Equation (9.9) shows that d! is the average of the delta (dk) parameters for one
item.

Next, let us define sk as the difference between d! and dk . That is,

sk ¼ d! & dk ð9:10Þ

Fig. 9.5 ICC for an essay marking criterion, “Cohesion”, using PCM on a 7-point scale

The Interpretation of dk 167
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Graphically, the relationships among sk, d! and dk are illustrated in Fig. 9.6.
The parameterisation of the PCM using d! and sk is mathematically equivalent to

the parameterisation using dk . Using Eqs. (9.9) and (9.10 ), one can compute d! and
sk from dk . Conversely, given sk , and d!, one can compute dk as

dk ¼ d! # sk ð9:11Þ

Interpretation of d! and sk

The parameter d! may be thought of as a kind of “average” item difficulty for a
partial credit item. This may be useful, if one wishes to have one indicative diffi-
culty parameter for a partial credit item as a whole. Otherwise, to describe the
difficulty of a partial credit item, one needs to describe the difficulties of individual
score categories within the item, such as using the Thurstonian thresholds described
in the next section.

The sk parameters are more difficult to interpret as stand-alone values. These
need to be interpreted in conjunction with d!. That is, sk, considered as a “step
parameter”, shows the distance of a partial credit score category from the “average”
item difficulty. The sk parameters suffer from the same problem as dk’s, in that the
sk’s can be dis-ordered.

Note that as d! is the average of dk ’s, if we sum up both sides of Eq. (9.11)
across the categories, k, we obtain

Fig. 9.6 Item characteristic curves for a three-category item with tau’s and deltas

168 9 Partial Credit Model
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Xm

k¼1

sk ¼ 0

ð9:12Þ

In the case of three response categories (0, 1, 2), we have s1 þ s2 ¼ 0 from
Eq. (9.12), so s1 ¼ # s2. In general, the sum of the sk parameters is zero, so there is
a constraint on the sk parameters. In some software programs, only the first m # 1
sk parameters are estimated, and the last sm is set to the negative sum of the other sk
parameters. In general, if the total number of response categories of a PCM item is
K (=m þ 1), then there are K − 2 s parameters estimated. As an example, if a PCM
item has 4 categories, 0, 1, 2, 3, then, using the delta d parameterisation, three d
parameters are estimated. Using the d" and s parameterisation, one d" is estimated,
and two s parameters are estimated. In all, there are still three parameters estimated
as in the case for the delta d parameterisation.

Additional Notes
Mathematically, d" is the intersection point of the probability curves for the
first and last score categories of a partial credit item. For example, if there are
3 score categories as shown in Fig. 9.6, d" is the intersection point of the
curves for category 0 and category 2. In the case of a 3-category partial credit
item, category 0 curve and category 2 curve are symmetrical about d". That is,
category 0 curve is a reflection of category 2 curve about the line h ¼ d", and
category 1 curve is symmetrical about the line h ¼ d" (see Fig. 9.6).
Interested readers can prove this property mathematically. However, this is
not usually the case when the number of score categories is more than 3, as
given by the following example for a 5-category partial credit item.

Tau’s and Delta Dot 169
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The rating scale model is a special case of the partial credit model in which the 

tau parameters for step j are the same for every item. That is, W11=W21=W31...,  W��=W22=W32..., 

etc.  In this formulation, our measurement model becomes  

 
¦ ¦
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where [i=(Gi, W1, W2,...Wm-1). Again, the final tau parameter, Wm, is not estimated because it 

is constrained to make the sum of all the tau parameters�equal to zero. 

The different parameterization techniques of the step difficulties for partial credit 

models and the item difficulties and tau parameters for rating scale models is an 

important distinction in representing the probability equations for Scoring Engine 

measurement models. If a rating scale model is to be used, then all items that map to the 

same dimension must use the same tau parameters. These parameterization options are 

discussed in more detail in the Measurement Model Examples section. 

Although these step locations are fundamental to defining the models, we have 

found that their interpretation can lead to misunderstandings among novices. Hence, we 

have developed an alternative way to display the model. The location at which a person 

has a 50% probability of achieving a score in that category or higher is referred to as the 

Thurstonian threshold (Wilson, 2005). These locations can be identified on cumulative 

probability plots at the points where the curves intersect with the probability = .5 line, as 

shown in Figure 7. These values tend to be more interpretable than Gj values because they 

identify levels where individuals are most likely to achieve specific scores. Using the 
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When using the partial credit model we generally parameterize the difficulty of 

achieving a score of j on item i and represent it with Gij. That is, Gij is the proficiency level 

required to expect an equal chance of responding in category j or in category j-1 on item 

i. Alternatively, we might think of the average of the Gij's as an overall item difficulty, 

and the step difficulties as each step's deviance from the average.  In looking at item 

difficulties in this way we are saying that each Gij can be formulated as Gi + Wij, where  Wij 

is the deviance from the average item difficulty for item i at step j.  Note that in this case 

the last tau parameter�is equal to the negative sum of the others so that the sum of all the 

tau parameters equals zero, ¦
�

 

� 
1

1

m

k
ikim WW . A graphical representation of this formulation 

for an item with two steps (and therefore three categories) is shown in Figure 6. 

 

Figure 6. Gi, W1 and W2 representations for the polytomous case with 3 categories. 

Rasch Andrich Rating Scale Model (Modelo de 
respostas Graduadas) 



Thurstonian Tresholds (limiares Thurstonianos): gama !γk

• Baseado na probabilidade acumulada  

• !  para uma categoria !  é definido como a habilidade na qual a probabilidade da 
resposta x ou maior é igual a .50 

• para um item de liker de cinco pontos teremos: 

• !  ponto na escala de habilidade em que a p >=.50 de se ter escore 1 ou 
mais (2, 3, 4, 5) 

•  !  ponto na escala de habilidade em que a p >=.50 de se ter escore 2 ou 
mais (3, 4, 5) 

•  !  ponto na escala de habilidade em que a p >=.50 de se ter escore 3 ou 
mais (4, 5) 

•  !  ponto na escala de habilidade em que a p >=.50 de se ter escore de 4 ou 
mais (5)

γ k

γ1

γ2

γ3

γ4



curve is less than 0.5 in this range). The probability of achieving a score of 0 is
more than 0.5. Therefore one might label the region from !1 to c1 as the “score 0”
region. As the ability increases from c1 to c2, the probability of achieving a score of
1 or more is more than 0.5 (the Pr(>=1) curve), but the probability of achieving 2 or
more is less than 0.5 (the Pr(>=2) curve). So one might label the region from c1 to
c2 as “score 1” region. In the same manner, we can label the “score 2”, “score 3”
and “score 4” regions.

From this point of view, Thurstonian thresholds can be viewed as cutpoints for
dividing up the ability continuum into “score regions”.

So, how do Thurstonian thresholds represent item score difficulties? Is c1 a
suitable measure for the difficulty of score 1, or is the region between c1 to c2 a
better indication of score 1 “difficulty”? Should we use the mid-point between c1 to
c2 as a measure of score 1 difficulty?

Comparing with the Dichotomous Case Regarding the Notion
of Item Difficulty

In the dichotomous case, item difficulty is defined as the ability at which the
probability of success on the item is 0.5. From this point of view, item difficulty for
the dichotomous case is also a threshold, and it divides the ability continuum into
two regions: score 0 and score 1 regions, and the item difficulty is the point where

Fig. 9.7 Cumulative probability curves to show Thurstonian thresholds
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score 1 region starts. Extending this notion to the PCM, the Thurstonian thresholds
can also be regarded as “score difficulties”. That is, c1 is a measure of score 1
difficulty, and c2 is a measure of score 2 difficulty, and so on. For example, if the
Thurstonian thresholds (in logits) for a 3-category item are –1.2 and 2.3, this
suggests that it is relatively easy to receive a score of 1, but relatively difficult to
receive a score of 2. Note that since Thurstonian thresholds are based on cumulative
probabilities where P(X >= k) is always larger than (P(X >= k + 1), Thurstonian
thresholds are never dis-ordered, making them more suitable for the interpretation
of item difficulty for partial credit items.

Compare Thurstonian Thresholds with Delta Parameters

Dichotomous Case

As the dichotomous Rasch model is a special case of the partial credit model, the
notion of Thurstonian thresholds also applies. In the dichotomous case, the
Thurstonian thresholds are equal to the delta (d ) parameters.

Partial Credit Case

Depending on whether d or c are used as estimates of item difficulty, different
difficulty measures are obtained. In the case of 3-category items, it can be shown
mathematically that the Thurstonian thresholds are always “wider” than the deltas, if
there are no reversals of the delta values. Figure 9.8 shows an example of com-
parisons between d and c values. Readers can prove this property as an exercise.

-3

-2

-1

0

1

2

3

delta1

delta2

threshold1

threshold2

Fig. 9.8 Comparisons of threshold and delta values for 25 items
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Escores esperados (expected escores)

Further Note on Thurstonian Probability Curves

It should be noted that the Thurstonian probability curves such as those shown in
Fig. 9.7 are not “parallel” in that the slopes of these curves are not equal.
Consequently this may pose a problem when making inferences on the probabilities
of the Thurstonian curves. For example, if one wants to know the ability at which
there is a 75% chance of obtaining a score or higher, it is not straightforward to find
the ability from a probability curve. As these curves involve cumulative proba-
bilities, there is no analytical solution to the probability functions to solve for ability
measures. Numerical methods are required to find the abilities for a given proba-
bility on the Thurstonian probability curves. In contrast, when response probability
(RP) is discussed in Chapter Seven, there is a simple formula to compute the ability
for any given probability when the item difficulty is known.

Using Expected Scores as Measures of Item Difficulty

Another measure of item difficulty for partial credit scoring items can be derived by
computing the expected score on an item, as a function of ability. Consider an item
with 3 score categories. The probabilities of scoring a 0, 1 or 2 are given by
Eqs. (9.5)–(9.7). The expected score, E, on this item, as a function of the ability h
and delta parameters d1 and d2, is given by

E ¼ 0" Pr X ¼ 0ð Þþ 1" Pr X ¼ 1ð Þþ 2" Pr X ¼ 2ð Þ ð9:13Þ

Computing E as a function of h, one can construct an Expected Scores Curve,
similar to the item characteristic curve. Figure 9.9 shows an example.

Let E1 be the ability at which the expected score on this item is 0.5. Let E2 be the
ability at which the expected score is 1.5. One might regard the region between E1
and E2 as the “score 1 region”, and the ability continuum below E1 as the “score 0
region”, and the ability continuum above E2 as the “score 2 region”. In this way, E1
could be regarded as an item difficulty parameter for score 1, and E2 could be
regarded as an item difficulty parameter for score 2.

The advantage of using E1 and E2 as indicators of difficulty is that the notion of
expected scores is readily comprehensible to the layman. In the case of Thurstonian
thresholds, the notion of cumulative probability is more difficulty to explain.

In addition, the expected scores curves provide a clearer comparison between the
theoretical model and the observed data, in contrast to the ICCs of a partial credit
model. For example, Fig. 9.10 shows the ICCs (left graph) and the expected scores
curve (right graph) of an item with scores 0, 1 and 2. The expected scores curve
(right graph) clearly shows that the item is not as discriminating as the model
expects, but this is not so obvious from the ICCs (left graph). Consequently, to have
an overview of how an item “performs” in a test, the expected scores curves are
preferable.
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Additional Notes
Sum of Dichotomous Items and the Partial Credit Model

Verhelst and Verstralen (1997) showed that if a set of dichotomous items
fit the Rasch model, then the sum of individual item scores can be modeled
using the partial credit model. However, the converse is not true. Polytomous
item scores fitting the partial credit model cannot always be decomposed into
individual Rasch item scores. Verhelst and Verstralen made the following

Fig. 9.9 Expected scores curve for a 3-category partial credit item

Fig. 9.10 ICCs (left graph) and expected scores curve (right graph) for a PCM item
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Do manual do Winsteps (https://www.winsteps.com/winman/index.htm):Table 3.2+ 
Summary of dichotomous, rating scale or partial credit structures 

https://www.winsteps.com/winman/index.htm


Aplicações do modelo de créditos parciais

• Respostas construídas -> créditos parciais 
• Escore máximo de um item equivale a seu peso ! 

• itens ruins que não separam as pessoas em baixa e alta capacidade 
não devem receber um peso mais alto 

• itens que separam claramente os sujeitos devem receber um peso 
maior 

• = discriminação 
• O que determina o número de pontos/categorias em um item: deveria 

ser seu índice de discriminação 
• Quão forte um item está relacionado ao construto geral sendo medido / 

quanta informação o item traz para a medida ? -> mais peso !



• How much “information” can an item provide about students’ ability/latent
trait? It is often the case that open-ended items provide richer information about
a student’s capabilities than multiple-choice items do. That information can be
used to separate students into several ability groups. If students’ item responses
can be clearly categorised into several increasing ability groups, then more score
points can be awarded.

It should be noted that once the maximum score of a partial credit item is
decided, score categories within an item must reflect increasing ability levels of
students, and thus reflect increasing difficulties of the task. This may be a point that
causes confusion: that the maximum score of an item relates to discrimination, but
score categories within an item relate to difficulty.

Deciding on the maximum score of a partial credit item still involves a great deal
of guesswork. As for dichotomous items, item statistics need to be checked to
ensure the item responses fit the IRT model. Inappropriate maximum scores of
partial credit items will be reflected in poor item fit statistics.

An Example Item Analysis of Partial Credit Items

The data set for this example came from a mathematics problem solving test for
grade 5 students. The test had 48 questions, arranged in 3 rotated test booklets. In
total, 1086 students took part in the test, but each item had around 500 student
responses. The test had a mix of dichotomously and polytomously scored items.
IRT and CTT analyses were conducted on the data set.

The following shows one example item (“Average”) from the test and corre-
sponding initial proposed scoring scheme:

Item 4: Item “Average”
Megan obtained an average mark of 81 for her four science tests. The fol-
lowing shows her scores for Tests 1, 3 and 4? What was her test score for Test
2? Show how you found your answer.

Test 1 Test 2 Test 3 Test 4 Average mark of 4 tests

84 ? 89 93 81

As students were requested to provide their working in solving the item, stu-
dents’ responses contained a variety of approaches and answers. These responses
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were categorised according to test writers’ views on the quality of the responses. In
summary, an initial scoring guide was developed as shown in Table 9.1.

Item statistics for this item are shown in Table 9.2.
A few observations can be made from the item statistics in Table 9.2. First, very

few students used the correct method but made a computational error leading to an
incorrect answer (score category 2). Similarly, few students used the trial and error
method and obtained the correct answer (score category 3). Second, the point
biserial correlations for categories 2 and 3 are very similar. Third, the average
abilities of students in categories 2 and 3 are very similar. These observations
suggest that categories 2 and 3 can possibly be combined.

The fit statistics for this item are given in Table 9.3. The fact that the fit mean
squares statistics are larger than 1 indicates that the item is not as discriminating as
the model expects for an item with a maximum score of 4. This is further confirmed
by the expected scores curve, as shown in Fig. 9.11. For high ability students, the
observed score is lower than the expected score.

Based on these item statistics, a recoding of the score categories is made by
collapsing categories 2 and 3 into a new category 2, and recoding the current
category 4 as category 3. That is, the item has a maximum score of 3 after recoding.

Table 9.1 Scoring scheme for item “Average”

Response Proposed
score

Correct analytic method and correct answer of 58 4
Trial-and-error method, but still obtained the correct answer 3
Correct analytic method, but computation error, resulting in incorrect answer 2
Computed the average of the three scores, but unable to proceed to produce the
correct answer

1

Other responses 0

Table 9.2 Item statistics for the item “Average”

Score category Frequency Percentage Pt biserial correlation Average ability

0 183 0.33 −0.60 −0.78
1 108 0.19 −0.12 −0.22
2 36 0.06 0.12 0.43
3 23 0.04 0.09 0.40
4 209 0.37 0.57 0.67

Table 9.3 Fit statistics for
item “Average”

Parameter Infit mean squares Infit t
d1 0.99 −0.14
d2 0.96 −0.72
d3 1.18 2.85
d4 1.14 2.34
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The item statistics of the recoded item are shown in Table 9.4. It can be seen that
both the point-biserial correlations and the average abilities show a nice progression
with increasing scores.

The fit statistics after recoding are shown in Table 9.5. The fit statistics have
improved after recoding, as the fit mean squares are closer to 1 and fit t values
closer to 0 than before the recoding.

The expected scores curve after recoding is shown in Fig. 9.12, where the
observed curve matches the expected reasonably well particularly for high ability
students.

Table 9.4 Item statistics for the item “Average”, after recoding

Score Category Frequency Percentage Pt biserial correlation Average ability

0 183 0.33 −0.59 −0.78
1 108 0.19 −0.11 −0.20
2 59 0.11 0.17 0.47
3 209 0.37 0.54 0.66

Table 9.5 Fit statistics for
item “Average”, after
recoding

Parameter Infit mean squares Infit t

d1 0.94 −0.76
d2 0.93 −1.55
d3 0.97 −0.52
d4 1.05 1.08

Fig. 9.11 Expected scores
curve for item “Average”
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The analyses presented above show that the maximum score assigned to a partial
credit item needs to be checked during the item analysis process. Frequently,
recoding of partial credit categories is needed. Further, the perceived progression of
response quality may not actually reflect increasing ability levels of students. In this
example, students who used the correct method but obtained an incorrect answer
through computational errors are of similar ability as students who obtained the
correct answer using a trial-and-error approach. If we simply score the responses on
the basis of correct/incorrect answer, we could have under-estimated the ability of
students who made computational slips. These are all issues to be considered
regarding scoring of item responses.

As an exercise, if we score the item simply based on correct and incorrect
answers (i.e., categories 3 and 4 are recoded to 1; categories 1 and 2 are recoded to
0), we observe a gross overfit of the item. Figure 9.13 shows the expected scores
curve. In this case, the maximum score for this item is 1. The observed curve is
much more discriminating (steeper) than the expected curve, indicating that the
maximum score can be increased. The fit statistics also shows a fit mean squares
value less than 1, and fit t statistics large negative (see Table 9.6), indicating that the
item is more discriminating than that expected of an item with a score of 1
(Fig. 9.13).

Fig. 9.12 Expected scores
curve of item “Average”, after
recoding

Table 9.6 Fit statistics for item “Average”, with dichotomous “correct/incorrect” scoring

Parameter Infit mean squares Infit t

d1 −0.88 −4.12
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The example item presented here demonstrates that when the item responses
provide more “information” about students’ ability levels, partial credit scoring can
be applied. If we only captured students’ final answer, there is limited scope of
dividing the item responses into ability groups.

On the other hand, we should stress that if a score category is found to be not
“attractive” (i.e., few students in the category), this observation alone does not
warrant the collapsing of the categories. If the item fits the IRT model, then col-
lapsing categories will lead to a mis-fit of the item. If there is evidence to show that
the item is not as discriminating as expected, then categories should be collapsed. In
general, the relative frequencies of responses in score categories are unrelated to the
decision of collapsing categories.

Rating Scale Model

In the partial credit model where the item parameters are expressed as d! and s
parameters, as shown in Eq. (9.14 ),

Pr Xni ¼ xð Þ ¼ exp
Px

k¼ 0 hn % d! % sikð Þð Þ
Pmi

h¼ 0 exp
Ph

k¼ 0 hn % d! % sikð Þð Þ
ð9:14 Þ

sik are often known as “step parameters”. For the partial credit model, the step
parameters are different across different items. This is the reason for the subscript i

Fig. 9.13 Expected scores
curve of item “Average”, with
“correct/incorrect” scoring
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Modelo Características (Parâmetros)

Rasch-Andrich Rating Scale Model 
(respostas graduais)

Generalização do modelo de Rasch para escalas likert 
Estima um índice de dificuldade por item e  k-1 
limiares (tresholds) gerais para as categorias (k = 
número de pontos na escala)

Rasch-Masters Partial Credit Model  
(créditos parciais)

Mais geral e flexível. Generalização do modelo de 
Rasch para itens politômicos 
Estima k-1 limires por item (k = número de pontos na 
escala)

Samejima’s Graded Response Model Generalização do modelo de 2 parâmetros para itens 
politômicos 
Estima um índice de discriminação e k-1 limiares 
(tresholds) as categorias (k = número de pontos na 
escala)

Generalized Rating Scale Model ou Muraki’s Modified 
Graded Response Model

Generalização do modelo de 2 parâmetros para escalas 
likert 
Estima um índice de dificuldade por item e  k-1 
limiares (tresholds) gerais para as categorias (k = 
número de pontos na escala)

Muraki’s Generalized Partial Credit Model Generalização do modelo de 2 parâmetros para escalas 
likert 
Estima um índice de dificuldade por item e  k-1 
limiares (tresholds) gerais para as categorias (k = 
número de pontos na escala)
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An NCME Instructional Module on Polytomous Item Response
Theory Models

Randall David Penfield, The University of North Carolina at Greensboro

A polytomous item is one for which the responses are scored according to three or more
categories. Given the increasing use of polytomous items in assessment practices, item response
theory (IRT) models specialized for polytomous items are becoming increasingly common. The
purpose of this ITEMS module is to provide an accessible overview of polytomous IRT models. The
module presents commonly encountered polytomous IRT models, describes their properties, and
contrasts their defining principles and assumptions. After completing this module, the reader
should have a sound understating of what a polytomous IRT model is, the manner in which the
equations of the models are generated from the model’s underlying step functions, how widely
used polytomous IRT models differ with respect to their definitional properties, and how to
interpret the parameters of polytomous IRT models.

Keywords: item response theory, polytomous items, partial credit model, graded response model, nominal
response model

I tem response theory (IRT) has become a widely adopted
framework for the development and scaling of educational

assessments. The widespread use of IRT stems from the many
advantages it offers in solving practical testing problems,
including linking and equating, establishing the psychometric
properties of items and assessments, optimizing the efficiency
of test delivery through tailored assessment systems, and
coupling assessment development and scoring procedures
with the cognitive attributes involved in generating responses
to items.

While many of the early developments in IRT focused on
dichotomously scored items (Lord, 1980), the past 30 years
have seen growing application of IRT to items having more
than two scored outcomes. Such items are commonly referred
to as polytomous items. Polytomous items are used in a va-
riety of settings, including the scoring of rated tasks, the
scoring of testlets or groups of dependent dichotomous items,
innovative item types, multiple-choice items for which the
distinction between all distractors are retained for scoring
purposes, and rating scales used to measure a host of psycho-
logical and behavioral traits. Now, more than 40 years since
the seminal work of Bock (1972) and Samejima (1969, 1972)
in developing the first widely adopted polytomous IRT mod-
els, numerous polytomous IRT models have been proposed
and applied in practice. These models are more complex
than their dichotomous counterparts, having more parame-
ters and a more sophisticated mathematical form. As a result,
individuals in the fields of assessment and measurement of-
ten have a weaker understanding of polytomous IRT models
than of widely adopted dichotomous models.

Randall David Penfield, Professor and Chair of the Department
of Educational Research Methodology, The University of North Car-
olina at Greensboro, 1300 Spring Garden, St. Greensboro, NC 27412;
rdpenfie@uncg.edu.

This instructional module provides an accessible overview
of the most widely used polytomous IRT models. By design,
this account is intended to be simple, nontechnical, and fo-
cused on the most frequently encountered polytomous mod-
els in practice. Individuals seeking a more comprehensive
treatment of polytomous IRT models and associated estima-
tion techniques are referred to the works of Baker and Kim
(2004), de Ayala (2009), Nering and Ostini (2010), Ostini
and Nering (2006), van der Linden and Hambleton (1997),
and Wright and Masters (1982). In addition, polytomous IRT
model summaries that are more technical in nature are pro-
vided by Mellenbergh (1995), Samejima (1996), Thissen and
Steinberg (1986) and van der Ark (2001).

Overview of Dichotomous IRT Models
Before embarking on a discussion of polytomous IRT models,
it will prove useful to review some general IRT principles
and terminology in the context of dichotomous items. To this
end, consider an assessment consisting of a series of items,
whereby each item is scored into a specified number of cat-
egories appropriate for estimating the respondent’s level of
the trait measured by the assessment, what I will refer to
hereafter as the target trait. Most often in educational as-
sessment the target trait is a particular knowledge, skill, or
ability. The scored outcomes to the ith item of the assessment
are denoted here by Y i. In the case of dichotomous items, the
outcomes of Y i are typically represented by Y i = 0 (incorrect)
and Y i = 1 (correct). At its core, IRT is based on estab-
lishing a unique model for each outcome of Y i that specifies
the probability of observing the outcome as a function of the
target trait. For a dichotomous item there are two possible
outcomes of Y i (0 and 1), and thus IRT generates two models;
one specifying the probability of Y i = 0 and one specifying the
probability of Y i = 1. Each of these two models is referred to
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Scored Categories for Yi

Yi = 0 Yi = 1 Yi = 2 Yi = 3

Step 1 F S

Adjacent Category Step 2 F S
Approach

Step 3 F S

Step 1 F S S S

Continuation Ratio Step 2 F S S
Approach

Step 3 F S

Step 1 F S S S

Cumulative Step 2 F F S S
Approach

Step 3 F F F S

Step 1 S F

Nominal Step 2 S F
Approach

Step 3 S F

FIGURE 4. Description of the step functions for a four-category polytomous item. Within each step, S represents success and F represents
failure. Under the nominal approach for defining step functions, the outcome Yi = 0 represents the correct option of a multiple-choice item
and Yi = 1, 2, 3 represent distractor options.

module presents polytomous IRT models according to each of
these four classes of step functions.

Adjacent Category Models
The first series of polytomous IRT models we discuss define
step functions using the adjacent category approach, which
defines the kth step function using only the adjacent pair of
score categories Yi = k − 1 and Yi = k. For example, the
first step function involves only the adjacent score categories
Yi = 0 and Yi = 1, and specifies the probability of success
on the first step as the probability that Yi = 1 given that
Yi = 0 or Yi = 1. Similarly, the second step function involves
only the adjacent score categories Yi = 1 and Yi = 2 where the
probability of success is defined as the probability that Yi = 2
given that Yi = 1 or Yi = 2. The remaining step functions are
defined in an analogous manner. The top portion of Figure 4
describes the steps associated with the adjacent categories
approach. Note that under the adjacent category approach,
each step involves only two score categories of Yi, whereby
success (S) at the step is assigned to the higher score category
and failure on the step (F) is assigned to the lower score
category and all other score categories are ignored.

A useful property of all adjacent category models is a rel-
atively simple interpretation of bik (the location of the kth
step). Recall that bik specifies the value of target trait at
which ! ik(θ) = .5 (i.e., the value of the target trait at which
the probability of success on the kth step equals .5). Because
the adjacent category definition of step function defines the

kth step function as the probability of Yi = k given that
Yi = k or k − 1, the target trait value at which ! ik(θ) =
.5 is necessarily the same value at which Pik(θ) = Pik−1(θ),
which reflects the value at which the IRFs for Yi = k and
Yi = k − 1 intersect. Thus, for adjacent category models bik
reflects the value of target trait at which the IRFs of adjacent
score categories intersect.

Of the widely used polytomous IRT models, three are based
on the adjacent category definition of the step function: the
partial credit model (PCM), the generalized PCM, and the
rating scale model (RSM). While these three models all use
the adjacent category definition of the step function, they
differ with respect to the model used to specify the step
functions and the constraints placed on the relative locations
of the m step functions. The following sections describe these
three models in more detail.

Partial Credit Model
The PCM (Masters, 1982) employs step functions defined
according to the adjacent category approach and specifies
the probability of success at the kth step, ! ik(θ), using the
Rasch model as shown in Equation 5. An example of step
functions of the PCM is shown in Figure 3A. To describe
how we arrive at the PCM equations specifying the IRFs for
Yi, let us take a closer look at the specific meaning of the
adjacent category step functions. Recalling that the kth ad-
jacent category step function specifies the probability that
Yi = k given that Yi = k or Yi = k − 1, we can express this
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Samejima’s Graded 
Response Model  
equivalente ao modelo 
de dois parâmetros 
(veremos na aula de 
modelos de 2p)



Exercício 3: Aplicando modelo de créditos parciais 
no SENNA 


