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A RASCH MODEL FOR PARTIAL CREDIT SCORING

GEeOFF N, MASTERS

UNIVERSITY OF CHICAGO

A unidimensional latent trait model for responses scored in two or more ordered categories is
developed. This “Partial Credit” model is a member of the family of latent trait models which share
the property of parameter separability and so permit “specifically objective” comparisons of per-
sons and items. The model can be viewed as an extension of Andrich’s Rating Scale model to
situations in which ordered response alternatives are free 10 vary in number and structure from item
to item. The difference between the parameters in this model and the “category boundaries” in
Samejima’s Graded Response model is demonstrated. An unconditional maximum likelihood pro-
cedure for estimating the model parameters is developed.

Key words: latent trait, Rasch model, ordered categories, partial credit.



PCM

» Dicotdmico vs Politomico
» Rubricas
- Categorias ordenadas

- K categorias = K- limiares (thresholds)



O modelo de créditos parciais

The PCM specifies that, while conditioning on scoring a O or 1 (i.e., we know
the score i1s either O or 1), the probability of a score of zero (X = 0) and the
probability of a score of 1 (X = 1) are given by

Pojo1 =Pr(X=0/X=0 or X=1)=
1

Pr(X = 0) + Pr(X = 1)

T 1+ exp(0 — 01) .
Pijog =Pr(X =1/X=0 or X=1)= Pr(X :Pg()X+_P32X =1)
exp(0 — d;) (9.2)

1+ exp(0 — d;)
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For this dichotomous case we have two probability equations:
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Figure 4. Item characteristic curve for a dichotomous (2-category) item.

Kennedy (2005). Constructing Measurement Models for MRCML Estimation: A
Primer for Using the BEAR Scoring Engine. Berkeley: BEAR



PCM especifica a probabilidade condicional de
duas categorias adjacentes

Equations (9.1) and (9.2) are in the form of the dichotomous Rasch probabilities.
Similarly, conditional on scoring a 1 or 2, the probability of X =1 and the
probability of X = 2 are given by

iz = PIX=1/X =1 or X=2) =5 :Prng:Prl()X =2)
1
Bt exp(0 — ) -
Prip=PrX=2/X=1 or X=2)= Pr(X :Prl()X+:Pr2()X = 2)
exp(0 — ) (9.4)

"1 exp(0 — 9,)

Equations (9.3) and (9.4) are also in the form of the dichotomous Rasch
probabilities.



PCM Probabilities for All Response Categories

While the derivation of the PCM is based on specifying probabilities for adjacent
score categories, the probability for each score, when all score categories are
considered collectively, can be derived. The following gives the probability of each
score category for a 3-category (0, 1, 2) PCM.

|
po=Pr(X =0) = 1+ exp(0 — d1) + exp(20 — (61 + 92)) 9:3)
B o exp(0 — 01)
=P =) = o) + exp20= (0, £ 0y)) Y
py = Pr(X = 2) — exp(20 — (01 + 92)) 9.7)

1 4+ exp(0 — 1) + exp(20 — (61 + 02))

More generally, if item i is a polytomous item with score categories 0, 1, 2, ...,
m;, the probability of person n scoring x on item i is given by

eXp Z?i:o (0, — i)

Pr Xm' =X) =
( ) >0 exp Yio (0n — 0u)

(9.8)

where we define exp Z/?:o (0, — o) = 1, and hence when the score is 0, the
numerator of Eq. (9.8) is 1. The summation index k refers to score categories.

Note that the number of 0, parameters is one less than the number of response
categories. For example, if there are three response categories, 0, 1 and 2, then there
are two 0 parameters, 0; and 0,. In the same way as for dichotomous items, when
there are two response categories (e.g., correct and incorrect), there is one item
difficulty parameter, o.



Wu, M. & Adams, R. (2007). Applying the Rasch model to psycho-social measurement: A practical approach.
Educational Measurement Solutions, Melbourne.
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From Figure 17, it can be seen that as ability increases, the probability of being in a
higher score category also increases.

Graphical interpretation of the delta (6 ) parameters
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Figure 5. Category probability curves and J;; values for a 3-category polytomous item.
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Item 5 - pharm - Item analysis (Item 5 — pharm)
In the Pharmochem company, there are 57 employees. @~~~ """~ ~7~ """ ""-TT-ooooommomomom oo oo
Each employee speaks either German or English, orboth. @ _~--" "~ “°°°° “"° - ° "7 "7 T° 77T
25 employees can speak German and 48 employees can 16%* 2 293 61.68 0.43
speak English. How many employees can speak both comp exr 1 113 22 : Zg _g '_ (3)%
German and English? Show how you found your
answer. ‘

- Scoring guide:

- Fully correct answer was given a score of 2. For

- responses with correct method but incorrect

- computation, a score of 1 was awarded.

. *Correct answer

Fig. 9.3 Item statistics for a partial credit scoring mathematics item

Partial credit scoring for a mathematics item
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Fig. 9.4 ICC for a partial credit mathematics item with dis-ordered thresholds
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Tau e delta dot

A variation of the parameterisation of the PCM is the use of 7’s (tau’s) and 0, (delta
dot). Mathematically, the delta (0;;) parameters in Eq. (9.8) can be re-written in the
following way:

Using the notations as in Eq. (9.8) but dropping the index i for simplicity, let

5o = Em: Se/m (9.9)

where m 1s the maximum score. That 1s, the total number of response categories of
an item is m—+ 1.

Equation (9.9) shows that o, is the average of the delta (d;) parameters for one
item.

Next, let us define 7, as the difference between o, and 0;. That is,

Tk — 5. — 51{ (910)

Graphically, the relationships among 14, 0, and 0, are illustrated in Fig. 9.6.

The parameterisation of the PCM using 0, and t; is mathematically equivalent to
the parameterisation using J. Using Egs. (9.9) and (9.10), one can compute 0, and
7, from 0. Conversely, given 1, and 0,, One can compute 0y as

5k = 5. — Tk (911)



Deita and Tau in partial credit model
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Rasch Andrich Rating Scale Model (Modelo de
respostas Graduadas)

The rating scale model is a special case of the partial credit model in which the

lau parameters for step j are the same for every item. That is, T1,=12;=T3;..., T12=T22=T32...,
tc. In this formulation, our measurement model becomes
eXpZ[H — (6, +7,)]

P(x;=c|&,0)=—12 :
Zexp [0—(5, +7,)]
k=0 =0

where £=(0;, T1, T2,...Tm-1)- Again, the final tau parameter, T, is not estimated because it

ls constrained to make the sum of all the tau parameters equal to zero.
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Thurstonian Tresholds (limiares Thurstonianos): gama ¥,

- Baseado na probabilidade acumulada

-y para uma categoria k é definido como a habilidade na qual a probabilidade da
resposta x ou maior € igual a .50

-+ para um item de liker de cinco pontos teremos:

- ¥ ponto na escala de habilidade em que a p >=.50 de se ter escore 1 ou
mais (2, 3, 4, 5)

¥Y> ponto na escala de habilidade em que a p >=.50 de se ter escore 2 ou
mais (3, 4, 5)

Y3 ponto na escala de habilidade em que a p >=.50 de se ter escore 3 ou
mais (4, 5)

Y4 ponto na escala de habilidade em que a p >=.50 de se ter escore de 4 ou
mais (5)



Thurstonian Thresholds, or Gammas (7))

probability

Thurstonian thresholds of a 5-category partial credit item
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Fig. 9.8 Comparisons of threshold and delta values for 25 items



—SCOres esperados (expected escores)

Another measure of item difficulty for partial credit scoring items can be derived by
computing the expected score on an item, as a function of ability. Consider an item
with 3 score categories. The probabilities of scoring a 0, 1 or 2 are given by
Egs. (9.5)—(9.7). The expected score, E, on this item, as a function of the ability 0
and delta parameters 0; and 0,, is given by

E=0xPrX=0)+1xPr(X=1)4+2x Pr(X =2) (9.13)

Computing E as a function of 0, one can construct an Expected Scores Curve,
similar to the item characteristic curve. Figure 9.9 shows an example.

Let E; be the ability at which the expected score on this item 1s 0.5. Let E; be the
ability at which the expected score is 1.5. One might regard the region between E
and E, as the “score 1 region”, and the ability continuum below E; as the “score 0
region”, and the ability continuum above E; as the “score 2 region”. In this way, E;
could be regarded as an item difficulty parameter for score 1, and E, could be
regarded as an item difficulty parameter for score 2.



174 9 Partial Credit Model

Expected scores curve for a 3-category
partial credit item

Expected score
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Fig. 9.9 Expected scores curve for a 3-category partial credit item
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Do manual do Winsteps (https://www.winsteps.com/winman/index.htm): Table 3.2+
Summary of dichotomous, rating scale or partial credit structures

Where does category 1 begin?
When describing a rating-scale to our audience, we may want to show the latent variable segmented into rating scale categories:

0 01 12 2

There are 3 widely-used ways to do this:

1. "1" is the segment on the latent variable from where categories "0" and "1" are equally probable to where categories "1" and "2" are equally probably. These
are the Rasch-Andrich thresholds (ANDRICH THRESHOLD) for categories 1 and 2.

2."1" is the segment on the latent variable from where categories "0" and "1+2" are equally probable to where categories "0+1" and "2" are equally probably.
These are the Rasch-Thurstone thresholds (50% CUM. PROBABILITY) for categories 1 and 2.

3. "1" is the segment on the latent variable from where the expected score on the item is "0.5" to where the expected score is 1.5. These are the Rasch-half-
point thresholds (ZONE) for category 1.

Alternatively, we may want a point on the latent variable correspond to the category:

0 1 2

4. "1" is the point on the latent variable where the expected average score is 1.0. This is the Rasch-Full-Point threshold (AT CAT.) for category 1.

- —

N Rasch-half-point mre)ﬁ;lds
- r

& £ { /
i Rasch-Andrich thresholds 5 '
2 | e 5
& £ §
> s -
§ : 3 ]
3 E 3 Rasch-full-point
“ 3 threshold

Measure relative 1o fem difficulty Measure relative to fem Gifficulty Measure refatrve to item difficulty



https://www.winsteps.com/winman/index.htm

Aplicacoes do modelo de créditos parciais

Respostas construidas -> créditos parciais

—score maximo de um item equivale a seu peso |

itens ruins que nao separam as pessoas em baixa e alta capacidade
nao devem receber um peso Mmais alto

itens que separam claramente 0s sujeitos devem receber um peso
maior

-+ = discriminacao

- O que determina 0 numero de pontos/categorias em um item: deveria
ser seu indice de discriminacao

- Quao forte um item esta relacionado ao construto geral sendo medido /
guanta informacao o item traz para a medida ? -> mais peso !



An Example Item Analysis of Partial Credit Items

The data set for this example came from a mathematics problem solving test for
grade 5 students. The test had 48 questions, arranged in 3 rotated test booklets. In
total, 1086 students took part in the test, but each item had around 500 student
responses. The test had a mix of dichotomously and polytomously scored items.
IRT and CTT analyses were conducted on the data set.

The following shows one example item (“Average”) from the test and corre-
sponding initial proposed scoring scheme:

Item 4: Item “Average”

Megan obtained an average mark of 81 for her four science tests. The fol-
lowing shows her scores for Tests 1, 3 and 4? What was her test score for Test
2? Show how you found your answer.

Test 1 Test 2

Test 3

Test 4

Average mark of 4 tests

84 ?

89

93

81

As students were requested to provide their working in solving the item, stu-
dents’ responses contained a variety of approaches and answers. These responses

Table 9.3 Fit statistics for
item “Average”

178
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Table 9.1 Scoring scheme for item “Average”

Response Proposed
score

Correct analytic method and correct answer of 58 4
Trial-and-error method, but still obtained the correct answer 3
Correct analytic method, but computation error, resulting in incorrect answer 2
Computed the average of the three scores, but unable to proceed to produce the 1

correct answer

Other responses 0

Table 9.2 Item statistics for the item “Average”

Score category Frequency Percentage Pt biserial correlation Average ability
0 183 0.33 —0.60 —-0.78
1 108 0.19 —0.12 -0.22
2 36 0.06 0.12 0.43
3 23 0.04 0.09 0.40
4 209 0.37 0.57 0.67

Parameter Infit mean squares Infit t
01 0.99 —0.14
02 0.96 —0.72
03 1.18 2.85
04 1.14 2.34

A few observations can be made from the item statistics in Table 9.2. First, very
few students used the correct method but made a computational error leading to an
incorrect answer (score category 2). Similarly, few students used the trial and error
method and obtained the correct answer (score category 3). Second, the point
biserial correlations for categories 2 and 3 are very similar. Third, the average
abilities of students in categories 2 and 3 are very similar. These observations
suggest that categories 2 and 3 can possibly be combined.

The fit statistics for this item are given in Table 9.3. The fact that the fit mean
squares statistics are larger than 1 indicates that the item is not as discriminating as
the model expects for an item with a maximum score of 4. This is further confirmed
by the expected scores curve, as shown in Fig. 9.11. For high ability students, the
observed score is lower than the expected score.

Based on these item statistics, a recoding of the score categories is made by
collapsing categories 2 and 3 into a new category 2, and recoding the current
category 4 as category 3. That is, the item has a maximum score of 3 after recoding.



Applications of the Partial Credit Model

Table 9.4 Item statistics for the item “Average”, after recoding

179

Score Category Frequency Percentage Pt biserial correlation Average ability
0 183 0.33 —0.59 —-0.78
1 108 0.19 —0.11 —0.20
2 59 0.11 0.17 0.47
3 209 0.37 0.54 0.66
Table 9.5 Fit statistics for Parameter Infit mean squares Infit t
item “Average”, after 5 0.04 Z076
recoding 1 : :
02 0.93 —-1.55
03 0.97 —-0.52
04 1.05 1.08
Fig. 9.11 Expected scores Expected Scores Curve - item 14
curve for item “Average” 4 -
3 -
2
S 27
w
1 -
0 —
1 I 1 1 1 I
-3 -2 -1 0 2 3

Fig. 9.12 Expected scores
curve of item “Average”, after
recoding
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Fig. 9.13 Expected scores
curve of item “Average”, with
“correct/incorrect” scoring
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Modelo Caracteristicas (Parametros)




Educational Measurement

ISSUES AND PRACTICE

Fducational Measurement: Issues and Practice
Spring 2014, Vol. 83, No. 1, pp. 36—48

An NCME Instructional Module on Polytomous Item Response
Theory Models

Randall David Penfield, The University of North Carolina at Greensboro
|

A polytomous item is one for which the responses are scored according to three or more
categories. Qiven the increasing use of polytomous items in assessment practices, item response
theory (IRT) models specialized for polytomous items are becoming increasingly common. The
purpose of this ITEMS module is to provide an accessible overview of polytomous IRT models. The
module presents commonly encountered polytomous IKT models, describes their properties, and
contrasts their defining principles and assumptions. After completing this module, the reader
should have a sound understating of what a polytomous IRT model is, the manner in which the
equations of the models are generated from the model’s underlying step functions, how widely
used polytomous IRT models differ with respect to their definitional properties, and how to
interpret the parameters of polytomous IRT models.

Keywords: item response theory, polytomous items, partial credit model, graded response model, nominal
response model



Scored Categories for Y;

Y;=0 Yi=1 ;=2 Y;=3
Step 1 | F | s |
Adjacent Category Step 2 \ F \ S \
Approach
Step 3 | F | s |
Step 1 | F | S S S |
Continuation Ratio Step 2 | F | S S |
Approach
Step 3 | F | s |
Step 1 | F | S S s |
Cumulative Step 2 | F F | S S |
Approach
Step 3 | F F F | s |
Step 1 | S | F |
Nominal Step 2
Approach
Step 3

Samejima’s Graded
Response Model
equivalente ao modelo
de dois parametros
(veremos na aula de
mogelos de 2p)

FIGURE 4. Description of the step functions for a four-category polytomous item. Within each step, S represents success and F represents
failure. Under the nominal approach for defining step functions, the outcome Y; = O represents the correct option of a multiple-choice item

and Y; =1, 2, 3 represent distractor options.



—xercicio 3: Aplicando modelo de créditos parciais
no SENNA




