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Modelo vs dados observados

• Rasch: modelo probabilístico do acerto !  em 
função de dois efeitos principais: theta !  e delta !  

• Mas outros fatores podem afetar a probabilidade de 
acerto: 
• chute (guessing) 
• dependência entre os itens 
• DIF 
• Outras dimensões

P = 1
θ δ



Estatísticas de ajuste do modelo (residual based fit 
statistics)

The most valuable contribution to the area of tests of fit for Rasch models in recent years
has been the recognition by some psychometricians that there is no such thing as a final ‘fit’
of data to the model and hence that no one test is ever likely to be complete (p. 43).

In the years since Douglas’ review, a considerable amount of new development
work on fit statistics has been undertaken (for example, Glas and Verhelst 1995;
Smith 1988). The increased power of computers has enabled more complex com-
putations to be performed and simulation studies have been used to test certain
conjectures and hypotheses. Where analytic derivations have become difficult,
empirically based approaches have been applied to provide better insight into the
properties of some of the fit statistics for which only the theoretical asymptotic
properties are known.

Generally, there are three types of fit statistics:

(1) Chi-square goodness-of-fit tests that are based on comparing observed and
expected counts of various types (e.g., Glas and Verhelst 1995).

(2) Tests that combine standardised residuals to form approximate normal vari-
ates. These tests are based on comparing the observed and expected responses
of individuals to items (Wright and Panchapakesan 1969, Wright 1977).

(3) Exploratory and nonparametric tests that provide diagnostic information about
specific model violations (e.g., Molenaar 1983, DIMTEST (Stout et al. 1996)).

Meijer and Sijtsma (2001) provided a comprehensive overview of various kinds
of person fit statistics.

Residual-Based Fit Statistics

In this chapter, we will focus on one type of fit statistics: the residual-based fit
statistics. This type of fit statistics is reported in a number of IRT software packages
such as Winsteps (Linacre and Wright 2000), RUMM (2001), ConQuest (Wu et al.
1998), TAM (Kiefer et al. 2013). A detailed discussion of residual-based fit
statistics can be found in Wu and Adams (2013).

Wright (1977) proposed several item fit and person fit statistics based on stan-
dardised residuals for the Rasch model. Let Xni be the observed score for person
n on item i, and Pni be the probability of obtaining a correct response for person
n on item i. Xni is the random variable for the (scored) item response for person n on
item i. We use capital letters to denote random variables and small letters to denote
observed values of corresponding random variables. Then the standardised residual
is defined as

zni ¼
xni " E Xnið Þð Þ
Var Xnið Þð Þ

1
2

ð8:2Þ
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where E Xnið Þ is the expected value of the item response, and Var Xnið Þ is the
variance of the item response. In the case of the dichotomous Rasch model,
E Xnið Þ ¼ Pni and Var Xnið Þ ¼ Pni 1$ Pnið Þ. The standardised residuals have served
as general diagnostic tools in the assessment of item and person fit. They are mostly
presented as graphical displays to draw attention to problematic items/persons,
rather than used as vigorous statistical tests for the fit of the model.

Squaring zni and summing over n (persons), a statistic is derived that can be used
as a fit index for item i. Squaring zni and summing over i (items), a statistic is
derived that can be used as a fit index for person n (Wright and Masters, 1982). For
item fit, Wright and Masters proposed an unweighted and a weighted statistic
(sometimes called the outfit and infit, or the unweighted total fit and weighted total
fit). The unweighted fit mean-square (outfit) statistic is defined as

Unweighted mean square ðoutfitÞ ¼
P

n z
2
ni

N
¼ 1

N

X
n

xni $ E Xnið Þð Þ2

Var Xnið Þ ð8:3Þ

where N is the total number of respondents. The weighted fit mean-square (infit)
statistic is defined as

Weighted mean square (infit) ¼
P

n z
2
niVar Xnið ÞP

n Var Xnið Þ
¼

P
n xni $ E Xnið Þð Þ2P

n Var Xnið Þ
ð8:4Þ

That is, the standardised residuals, zni, are weighted by Var Xnið Þ, and the
denominator in Eq. (8.4) is the sum of the weights.

When certain assumptions are made, it can be shown that both the unweighted
mean-square (outfit) and the weighted mean-square (infit) have expectations of one.
The variances of the mean-square can also be computed. Wright and
Panchapakesan (1969) indicated that both the weighted and the unweighted
mean-square can be treated as chi-square variates. They also suggested the use of a
cube root transformation (the Wilson-Hilferty transformation) of the mean-square to
obtain a t statistic that has an approximate normal distribution so that a frame of
reference can be established in testing the fit of the model.

Additional Notes
The term “weighted mean-square” is used to indicate that the square of the
standardised residuals are weighted by the variance of the item response (See
Eq. (8.4)). Each z2ni is multiplied by Var Xnið Þ in the numerator of Eq. (8.4).
The denominator is the sum of the weights. In contrast, for unweighted
mean-square (Eq. (8.3)), each z2ni can be considered to have a weight of one
(equal weight), and the denominator, N, is the sum of the weights.

There is a common sense justification for the weight, Var Xnið Þ, used in
weighted mean-square. Essentially, when the item difficulty of an item is
close to the ability of a person, Var Xnið Þ is relatively large. When an item is
“off-target” (too easy or too hard), Var Xnið Þ is relatively small. So one uses a
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Interpretando medidas de ajuste

• O valor esperado = 1 
• underfit e overfit 
• Esses índices testam a propriedade do modelo que supõe 

discriminação constante 
• Não testa o “ruído” 
• Rasch não estabelece um valor absoluto para o parâmetro 

de discriminação. É um valor médio da discriminação dos 
itens ne teste. Se um idem tem infit/outfit alto significa que 
ele é muito diferente dos outros que estão no set de itens



It can be shown that, when the observed item characteristic curve (ICC) is “steeper”
than the expected ICC, the fit mean-square value is less than one. When the
observed ICC is “flatter” than the expected ICC, the fit mean-square value is greater
than one. Figure 8.2 shows an example where the observed ICC is flatter than the
expected ICC (infit mean-square = 1.27). Figure 8.3 shows an example where the
observed ICC is steeper than the expected ICC (infit mean-square = 0.90). (See Wu
and Adams (2013) for more detailed mathematical explanations).

Fig. 8.2 Observed ICC is
“flatter” than expected ICC
(under-fit) (infit
MNSQ = 1.27)

Fig. 8.3 Observed ICC is
“steeper” than expected ICC
(over-fit) (infit
MNSQ = 0.90)
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We note that the slope of the expected (or theoretical) ICC is the “average” of
the slopes of all observed ICCs. So, in every data set, if some items show
“under-fit”, some items will show “over-fit”.

Not About the Amount of “Noise” Around the Item
Characteristic Curve

Contrary to common belief, the residual-based fit statistics do not provide an
indication of how far away the observed ICC is from the theoretical ICC. That is,
provided that the “slope” of the observed ICC is the same as the slope of the
theoretical ICC, the fit mean-square will not show misfit whether the observed ICC
is close or far away from the theoretical ICC.

Figure 8.4 shows an item where the observed ICC appears to be close to the
theoretical ICC for all ability groups. The weighted fit mean-square is 1.01. By
contrast, Fig. 8.5 shows an item where the observed ICC has a number of points
“far away” from the theoretical ICC, particularly for ability groups in the higher
range. Yet the weighted fit mean-square is still 1.00. These two examples show that
the fit mean-square statistic is not about the amount of “noise” of the observed ICC
as compared to the theoretical ICC. Rather, the fit mean-square statistic is testing
whether the “slope” of the observed ICC is the same as the theoretical ICC.

It is worth stressing the point that the Rasch model does not specify an absolute
value for the discrimination parameter. Therefore, when an item is identified as a
misfitting item, it shows that the item is different from the other items in the same
test. So from this point of view, the “fit” index shows “relative fit” and “absolute

Fig. 8.4 Points of observed
ICC are close to the
theoretical ICC (infit
MNSQ = 1.01)
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fit”. An item showing misfit in one test may very well fit with items in another test.
We expand this point in the latter part of this chapter.

Discrete Observations and Fit

Figures 8.4 and 8.5 demonstrate that the visual impression of the closeness between
the observed and expected ICC does not necessarily reflect the fit of an item to the
Rasch model. This, in part, is due to the discreteness of the response data, namely, 0
and 1, in the case of dichotomous data. While the expected score is a number
between 0 and 1, the observed score is either 0 or 1. If we plot the expected scores
curve together with the actual observed data, we see that the observed data is nearly
always “far away” from the expected scores curve. Figure 8.6 shows such a plot.

The circles in Fig. 8.6 show the observed responses, which are either 0 or 1.
There are fewer 0’s than 1’s at the high end of the ability scale, and there are fewer
1’s than 0’s at the low end of the ability scale. To plot the observed ICC, we
typically group response data into ability groups. The visual appearance of the
observed ICC depends very much on the number of ability groups and the student
sample size. For example, Fig. 8.7 shows the ICC for an item when there are 10
ability groups (left graph) and 6 ability groups (right graph), for the same item.
These two graphs look quite differently in terms of the match between the observed
data with the expected values. When there are fewer groups, the number of
observations in each group is larger so the curve appears smoother. For very large
samples, the curve will be smoother than for smaller samples. The difference in
appearance of the observed ICCs shows that the residual-based fit statistics are not

Fig. 8.5 Points of observed
ICC “far away” from the
theoretical ICC (infit
MNSQ = 1.00)
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the same as the concept of “goodness-of-fit” in the context of regression analysis
where one checks the deviation of each observation from the expected curve.

Distributional Properties of Fit Mean-Square

In the above section about the derivation of the fit mean-square statistic (Eqs. (8.3)
and (8.4)), it is stated that the expectation of these two statistics is one. That is,

Fig. 8.6 Expected scores curve versus raw data

Fig. 8.7 ICCs of an item with 10 ability groups (left) and 6 ability groups (right)
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• ajuste por meio da 
análise visual não 
necessariamente 
indica o ajuste 

• diferença entre 
resíduos de 
regressão 



Análise da distribuição dos índices de ajuste infit e 
outfit

• O que significa o “valor esperado = 1” 
• Se ajustássemos o modelo de rasch a um conjunto de 

itens que seguem os pressupostos do modelo, como 
ficariam distribuídos os índices de ajuste ? 

• M=1 Var=2/N

In contrast, Fig. 8.9 shows a fit map of the same 20 items administered to 500
students. It can be seen that the fit mean-square values are generally between 0.9
and 1.10. The only difference between the two analyses is the sample size. The
same items were used for both analyses. Since the data were simulated according to
the Rasch model, all items were expected to fit the model. These two examples
demonstrate that an assessment of the magnitude of the fit mean-square statistic
should take into account of the sample size of the test administration.

Additional Notes
The numerator in the unweighted fit mean-square statistic,

P
n z

2
ni, is an

observed value of the sum of squares of random variables Zni with mean 0
and standard deviation of 1. The random variable, Zni, has a discrete distri-
bution, as the observed response can only take values 0 and 1 (in the
dichotomous case). While Zni is not a standard normal random variable, when
N is large,

P
n Z

2
ni can be regarded as having a chi-square distribution with N

degrees of freedom (note that the sum of squares of independently distributed
standard normal random variables has a chi-square distribution with N
degrees of freedom.) The mean of a chi-square distribution with N degrees of
freedom is N, and the variance is 2N. Consequently, the asymptotic variance

of the unweighted fit mean-square is Var
P

n
Z2
ni

N

! "
¼ 1

N2 " 2N ¼ 2
N

Fig. 8.9 Fit mean squares map when sample size = 500
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when the data fit the model, we expect the fit mean-square to be close to one. But
“how close to one” is a judgment call. To assess “how close to one is close
enough”, we will need to know the amount of variation of the mean-square
statistics. More formally, it can be shown that the asymptotic variance of the fit
mean-square is given by 2/N, where N is the sample size of students (see Additional
Notes). This means that if a test is given to a small group of students (i.e. N is
small), we would expect the fit mean-square for each item to fluctuate quite widely
around one, even when the items fit the Rasch model. For example, if the sample
size is 200, we would expect 95% of the mean-square values to be between 0.8 and

1.2 (standard error =
ffiffiffiffiffiffi
2

200

q
¼ 0:1). In comparison, when the same test is given to a

large group of students, the fit mean-square will be very close to one. For example,
if the sample size is 2000, we would expect 95% of the mean-square values to be

between 0.94 and 1.06 (
ffiffiffiffiffiffiffi
2

2000

q
¼ 0:03). Since the variance of the mean-square

statistic depends on the sample size, we need to be careful about applying fixed
limits around one to make an assessment of the fit of an item.

Figure 8.8 shows a fit map of 20 items administered to 100 students for a
simulated data set. It can be seen that the fit mean-square values are generally
between 0.8 and 1.2.

Fig. 8.8 Fit mean squares map when sample size = 100
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The Fit t Statistic

The fit t statistic, however, does take sample size into account. Even though it is
called a t statistic, the fit t statistic can be regarded as a normal deviate with a mean
of zero and a standard deviation of one (i.e., a “z” score), as the sample is typically
large enough to use the normal approximation. The fit t statistic is a transformation
of the fit mean-square value, taking into account of the mean and variance of the fit
mean-square statistic.

Additional Notes
To transform the fit mean-squares to a standardised normal statistic so that
one can look up the level of significance easily, the Wilson-Hilferty trans-

formation tunwtt ¼ Fit1=3unwtt " 1þ 2=ð9NÞ
! "

=ð2=ð9NÞÞ1=2 is often used, where

Fit is the mean-square value.
An alternative transformation is given in Wright and Masters (1982) that

uses a cube root transformation of the fit mean-square and its variance:

tunwtt ¼ Fit1=3unwt " 1
h i

& 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Fitunwttð Þ

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Fitunwtð Þ

p

3

Since the fit t statistic can be regarded as a normal deviate, a t value outside the
range of −2.0 to 2.0 (or −1.96 to 1.96, to be more precise) can be regarded as an
indication of misfit, at the 95% confidence level.

On the surface, our problem regarding the lack of a stable frame of reference for
the fit mean-square values seems to have been solved. Unfortunately, this is not the
case.

The problem is, in real-life, no item fits the Rasch model perfectly. When items
do not fit the Rasch model, any misfit, however small, can be detected when the
sample size is large enough. This means that the fit t values will invariably show
significance when the sample size is very large. In some sense, the t values are
telling the “truth”, that there are indeed differences between items, and the items do
not tap into the same construct. However, some of these differences between items
may be minute from a practical point of view.

The following shows an example of how sample size affects the fit t values.
Item response data from the First International Mathematics Study (FIMS) (IEA

study conducted in 1964) for Australia and Japan were scaled using the Rasch
model, first selecting just 500 students at random, and then selecting 2000 students
at random. Finally the full data set with 6371 students was analysed. That is, the
items scaled in all three samples were exactly the same, but the sample analysed
increased in size. Figures 8.10, 8.11, 8.12 show the fit t values for these three
samples.
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To transform the fit mean-squares to a standardised normal statistic so that
one can look up the level of significance easily, the Wilson-Hilferty trans-

formation tunwtt ¼ Fit1=3unwtt " 1þ 2=ð9NÞ
! "

=ð2=ð9NÞÞ1=2 is often used, where

Fit is the mean-square value.
An alternative transformation is given in Wright and Masters (1982) that

uses a cube root transformation of the fit mean-square and its variance:

tunwtt ¼ Fit1=3unwt " 1
h i

& 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Fitunwttð Þ

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Fitunwtð Þ

p

3

Since the fit t statistic can be regarded as a normal deviate, a t value outside the
range of −2.0 to 2.0 (or −1.96 to 1.96, to be more precise) can be regarded as an
indication of misfit, at the 95% confidence level.

On the surface, our problem regarding the lack of a stable frame of reference for
the fit mean-square values seems to have been solved. Unfortunately, this is not the
case.

The problem is, in real-life, no item fits the Rasch model perfectly. When items
do not fit the Rasch model, any misfit, however small, can be detected when the
sample size is large enough. This means that the fit t values will invariably show
significance when the sample size is very large. In some sense, the t values are
telling the “truth”, that there are indeed differences between items, and the items do
not tap into the same construct. However, some of these differences between items
may be minute from a practical point of view.

The following shows an example of how sample size affects the fit t values.
Item response data from the First International Mathematics Study (FIMS) (IEA

study conducted in 1964) for Australia and Japan were scaled using the Rasch
model, first selecting just 500 students at random, and then selecting 2000 students
at random. Finally the full data set with 6371 students was analysed. That is, the
items scaled in all three samples were exactly the same, but the sample analysed
increased in size. Figures 8.10, 8.11, 8.12 show the fit t values for these three
samples.
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From Figs. 8.10, 8.11, 8.12, it can be seen that as sample size increases, the fit
t values became progressively far away from zero so that many items showed
statistically significant misfit.

Item Fit Is Relative, Not Absolute

As we have mentioned, the fit mean-square statistic defined in Eq. (8.3 ) tests
whether the item has the same “slope” as the other items in the test, since the Rasch
model makes the assumption that all items have the same discrimination. The Rasch
model does not, however, stipulate what the discrimination should be.

outfitItem   outfitItem_t  infitItem infitItem_t
M1PTI1     1.0176412     0.1681252    0.9604863 -0.6563752
M1PTI2     0.8600060 -0.8820403    0.9132830 -1.4011322
M1PTI3     0.8747212 -0.5301774    0.9267337 -0.8653759
M1PTI6     0.8348506 -1.6447400    0.9073273 -2.1574356
M1PTI7     0.5103849 -2.8934127    0.7318945 -3.4068671
M1PTI11    0.7181897 -1.5328399    0.8410477 -2.1687957
M1PTI12    1.2043202     2.0302249    1.1212745     2.5738491
M1PTI14    1.4884776     4.9042209    1.2516368     5.6743577
M1PTI17    1.1407154     1.0991002    0.9672130 -0.5461018
M1PTI18    0.9293927 -0.6623501    0.9005372 -2.3313171
M1PTI19    0.6514076 -2.6648368    0.7768166 -3.6387173
M1PTI21    1.8352155     4.5175900    1.3942578     5.2328157
M1PTI22    1.2055754     1.1699414    1.0063787     0.1092650
M1PTI23    0.9120535 -0.6515327    0.9760430 -0.4367405

Fig. 8.10 Fit t values for a sample of 500 students

outfitItem   outfitItem_t  infitItem    infitItem_t
M1PTI1     1.0617523     0.7379272    1.0214576     0.6765263
M1PTI2     0.7068081 -3.8128545    0.8672650 -4.3360205
M1PTI3     0.8524912 -1.3102948    0.9423666 -1.3888542
M1PTI6     0.8184879 -4.0480032    0.8627173 -6.9696935
M1PTI7     0.7469162 -2.9795967    0.8325752 -4.2399000
M1PTI11    0.7920345 -2.4043510    0.9034710 -2.9044195
M1PTI12    1.4255288     8.0500594    1.2021082     8.1901920
M1PTI14    1.3671890     7.4344970    1.2199722     9.3759386
M1PTI17    1.1176319     1.7561847    0.9639025 -1.1589724
M1PTI18    0.9377125 -1.2471293    0.9689911 -1.4644269
M1PTI19    0.5785473 -6.2854536    0.7602613 -7.1088021
M1PTI21    1.7399073     8.8961978    1.3602378     9.9630739
M1PTI22    0.9774774 -0.2471895    0.9211786 -2.1140544
M1PTI23    0.7957022 -3.3884918    0.9086099 -3.7092765

Fig. 8.11 Fit t values for a sample of 2000 students
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Consequently, items in a test will show good fit (i.e., fit mean-squares around 1) if
the items have similar discrimination, even if the discrimination power is poor. That
is, if all items are equally “bad” (here we use the term “bad” to indicate low
discrimination power), the items will still show good fit, because they have equal
discrimination. Consequently, when there is no mis-fitting item, we might conclude
that the response data fit the Rasch model, we cannot conclude that we have the best
test. The test reliability may still be low. Figure 8.13 shows a comparison of
weighted fit mean-squares and test reliability between two 20-item tests.

The fit mean-squares of both tests show that there is no mis-fitting item, but the
two tests have quite different test reliability.

In the extreme case, if every student randomly guesses answers to all questions,
the items will still fit the Rasch model (items are equally (non-)discriminating). But
the test reliability will be close to zero. Consequently, to check whether the test
instrument as a whole has the capacity to separate students in terms of their abilities,
the reliability index is still a better measure, not the fit statistics. The classical test
theory discrimination index is also a good indicator of item discrimination.

Since the fit statistics test whether the items have equal discrimination, an item
showing mis-fit in a test may very well show good fit in another test. For example,
an “over-fit” item (fit mean-square less than 1) shows that the item is more dis-
criminating than most other items in the test. If we take all highly discriminating
items (fit mean-squares less than 1) in a test and re-run the item analysis, we will
find that some of the items will now show “under-fit” and others will show
“over-fit”, since the fit statistics show the relative discrimination powers of items
within an item set.

In practice, to select items from a trial analysis, it is best not to choose the set of
items with fit statistics around 1 (the best fitting items), since these “good-fit”’ items
are items with “mediocre” discrimination. We recommend selecting the “over-fit”
items (with fit mean-squares less than 1). These items are highly discriminating
items.

outfitItem   outfitItem_t   infitItem   infitItem_t
M1PTI1     1.0772154     1.59714318    1.0182028     1.012313
M1PTI2     0.7127304 -7.01014880    0.8631072 -8.290753
M1PTI3     0.8548437 -2.31343680    0.9401009 -2.554359
M1PTI6     0.8511479 -5.89885727    0.8890838 -9.915885
M1PTI7     0.7157490 -5.61754107    0.8225674 -7.870286
M1PTI11    0.7980984 -4.14518615    0.8942556 -5.626692
M1PTI12    1.3649289    11.26997571    1.1814339    12.419531
M1PTI14    1.3721131    12.92338691    1.2133264    16.153633
M1PTI17    1.0984786     2.55868638    0.9547443 -2.676895
M1PTI18    1.0018899     0.07510419    0.9785618 -1.767476
M1PTI19    0.6063701 -9.90033565    0.7778577 -11.743530
M1PTI21    1.7837242    15.58244351    1.3510149    17.137759
M1PTI22    0.9783801 -0.41760535    0.9138654 -4.053861
M1PTI23    0.8246742 -5.15048395    0.9192772 -5.788562

Fig. 8.12 Fit t values for a sample of 6371 students
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Some textbooks or other resources make recommendations on the range of
acceptable mean-square values or t values for residual-based fit statistics. There are
probably no right or wrong answers. You will need to understand the issues with
these fit statistics when you apply rules of thumb.

More importantly, fit statistics should serve as an indication for detecting
problematic items rather than for setting concrete rules for accepting or rejecting
items. Based on the fit statistics, one should examine the items and look for sources
of misfit. Improve or reject items if sources of misfit can be identified. The fit
statistics should not be used blindly to reject items, particularly those that “over-fit”,
as you may remove the best items in your test because the rest of the items are not
as “good” as these items.

Furthermore, when residual-based fit statistics show that items fit the Rasch
model, this is not sufficient to conclude that you have the best test. The reliability of
the test and item discrimination indices should also be considered in making an
overall assessment.

Additional Notes
Figure 8.14 shows the theoretical, or expected, item characteristic curve for
an item, with four points, A, B, C, and D denoting four regions where the
observed ICC may fall. Point A denotes the region above the theoretical ICC,
and to the right of the vertical line where θ = δ, the ability at which there is a
50% chance of obtaining the correct answer. Point B denotes the region
below the theoretical ICC and to the right of the vertical line θ = δ. Point C
denotes the region above the theoretical ICC but to the left of the θ = δ line.
Point D denotes the region below the theoretical ICC and to the left of the
θ = δ line. It can be shown mathematically that the contribution of observed

points in the A and D region to the outfit mean-square, z2ni ¼
xni"E Xnið Þð Þ2
Var Xnið Þð Þ , has

an expectation less than one, while the expectation of z2ni for points in the C
and B regions is greater than one. It is clear then the fit mean-square value
provides a test of whether the “slope” of the observed ICC is the same as the

δ

Item Characteristic Curve
Probability of Success

Very low achievement Very high achievement

0.5

• A 

• B 

• C 

• D 

Fig. 8.14 Expected ICC and
observed ICC points
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theoretical one. Given that the theoretical one can be regarded as an “average”
of all items, the fit mean-square value tests whether the observed ICC for this
item is the same as the slopes of the other items.

When residual-based fit statistics show that items fit the Rasch model, this
is not sufficient to conclude that you have the best test instrument.

Discussion Points

(1) Explain why we say that when the item difficulty of an item is close to the
ability of a person, the corresponding Var Xnið Þ is relatively large?

(2) Consider Fig. 8.6 that shows the expected scores curve versus the observed
responses, which are either 0 or 1, of a typical item. Explain why there are
fewer 0’s than 1’s at the high end of the ability scale, and fewer 1’s than 0’s at
the low end of the ability scale.

(3) Discuss what you would do after you have detected some items with fit mean
squares statistics quite different from the value of 1? Should you simply label
them as bad items? Are there other considerations?

(4) We explain in this chapter that with a larger sample size, the mean-square
statistics of the items will be closer to 1. In a sense, the items could be
considered to “fit” better under a larger sample size. On the other hand, we
also point out that with a larger sample size, more items will be identified to
deviate from 0 in terms of the fit t statistics. In a sense, more items are
considered to “fit” worse under a larger sample size. Explain this apparent
dilemma and why a larger sample size seems to have different effect in terms
of different statistics. Understand how to navigate between these two types of
statistics in practical works in assessment. It is important to remember that the
fit statistics should not be used blindly to reject items.

Exercises

Q1. In TIMSS 2011 student questionnaire for New Zealand Year 9 students, there is
a question about home possession, as show in Fig. 8.15 (TIMSS 2010). These
questions could be measuring the “family wealth” construct. The data set was
downloaded from the TIMSS and PIRLS website.

(Source TIMSS 2011 Assessment. Copyright © 2013 International Association for the
Evaluation of Educational Achievement (IEA). Publisher: TIMSS & PIRLS International
Study Center, Lynch School of Education, Boston College, Chestnut Hill, MA and
International Association for the Evaluation of Educational Achievement (IEA), IEA
Secretariat, Amsterdam, the Netherlands).
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Benchmarks

• Critérios para Infit, Outfit:  

• >2,0: Degrada o sistema de mensuração,  

• 1,5 a 2,0: Não produtivo para medida 

• 0,5 a 1,5: Produtivo 

• <0,5 menor produtivo mas menos preocupante. Pode produzir 
artificialmente altas precisões 

•



Análise de person misfit



Ajuste dos itens é relativo

• Os índices avaliam a discrepância entre a ICC esperada 
do item a ICC observada 

• A ICC esperada terá a discriminação média dos itens 
presentes no teste 

• Se retirarmos um item essa discriminação média mudará 
• Procedimento:  

• deletar itens com valores muito maiores do que 1 (1.4). 
Manter itens com valores <1.  

• Recalcular os índices nos itens restantes



Para aprofundar …

• https://www.rasch.org/rmt/rmt82a.htm 
• https://www.winsteps.com/winman/misfitdiagnosis.htm 
• https://www.rasch.org/rmt/rmt83b.htm 

• https://www.edmeasurementsurveys.com/TAM/Tutorials/
index.htm

https://www.rasch.org/rmt/rmt82a.htm
https://www.winsteps.com/winman/misfitdiagnosis.htm
https://www.rasch.org/rmt/rmt83b.htm
https://www.edmeasurementsurveys.com/TAM/Tutorials/index.htm
https://www.edmeasurementsurveys.com/TAM/Tutorials/index.htm


Exercício: calcule os índices de ajuste para os 
dados do exercício 2


