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Quais propriedades um teste ideal deveria ter ?

• Confiável (precisão) 
• Útil para algum propósito (validade) 
• “Stable frame of reference” , “invariance" 

• Medidas pelo menos no nível intervalar (qualitativo 
nominal, qualitativo ordinal, quantitativo intervalar e 
quantitativo de razão  

• Com métrica com sentido substantivo (não arbitrária) 
• TCT -> medidas ordinais
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want our test scores to reflect students’ suitability for taking this course. This notion
of “usefulness” relates to the concept of “validity” in educational measurement.

Furthermore, we would like the test scores to provide us with a stable frame of
reference in comparing different students. For example, if the test scores from one
test tell us that, on a scale of geometry ability from low to high, Tom, Bev and Ed
are located as follows:

If we give Tom, Bev and Ed another test on geometry, we hope that they will be
placed on the geometry ability scale in the same positions relative to each other as
that shown in Fig. 6.1. That is, no matter which geometry test is administered, the
result will show that Bev is a little better than Tom in geometry, but Ed is very
much better than both Tom and Bev. If this can be achieved, the measurement is at
the interval level, where statements about the distances between students can be
made, and not just rank ordering. The measurement also has an “invariance”
property in that the placement of students on the ability line does not change when
different tests tapping into the same construct are administered. In the following
section, we will identify some problems with using test scores as ability estimates,
in relation to the measurement invariance property.

Ability Estimates Based on Raw Scores

Let us consider using raw scores on a test as a measure of ability. The term “raw”
refers to that the test scores have not been transformed in any way. Suppose two
geometry tests are administered to a group of students, where test 1 is easy and test
2 is hard. Suppose A, B, C and D are four students with differing abilities in
geometry. A is an extremely able student in geometry, B is an extremely poor
student in geometry, and C and D are somewhat average students in geometry.

If the scores of students A, B, C and D on the two tests are plotted, one may get
the four points shown in Fig. 6.2.

From Fig. 6.2, one can see that student A, being excellent in geometry, is likely
to score high on both the easy test and the hard test. Student B, being rather poor at
geometry, is likely to score low on both tests. Students C and D are likely to score
somewhat higher on the easy test, and somewhat lower on the hard test.

On the horizontal axis where the scores on the easy test are placed, it can be seen
that A and C are closer together than B and C in terms of their raw scores. However,
on the vertical axis where the scores on the hard test are placed, A and C are further

Geometry ability scale High abilityLow ability

Tom Bev Ed

Fig. 6.1 Locations of Tom, Bev and Ed on the geometry ability scale
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apart than B and C. If both the easy test and the hard test measure the same ability,
one would hope to see the same distance between A and C, irrespective of which
test is administered. From this point of view, we can see that raw scores do not
provide us with a stable frame of reference in terms of the distances between
students on the ability scale. However, raw scores do provide us with a stable frame
of reference in terms of ordering students on the ability scale.

In more technical terms, one may say that, in this example, raw scores provide
ordinal measurement, and not interval measurement. Consequently, at least in some
cases, the ability estimates based on raw scores are dependent on the particular test
administered. This would not be a desirable characteristic of an ideal measurement.

However, the example we provided is quite an extreme case. In practice, if the
test difficulties are similar across different tests and the tests are long, raw scores can
provide near-interval measures, particularly for the ability range in the centre of the
distribution. It may be better to say that raw scores provide measures somewhere
in-between ordinal and interval measurement. For example, from Fig. 6.2, one can
still make the judgement that C and D are closer together in terms of their ability
than B and C, say, whether the easy test or the hard test is administered.

Another observation about Fig. 6.2 is that the relationship between the scores on
the two tests is not linear (not a straight line). That is, to map the scores of the hard
test onto scores of the easy test, there is not a simple linear transformation such as a
constant shift and/or a constant scaling factor. If the relationship between scores on
two tests is a straight line, then comparing two students using either test will give
the same relative distances between students. Item response modelling provides
such a transformation of test scores to make the relationship between scores on two
tests a linear one. We clarify this in the latter part of this chapter.
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Linking People to Tasks

Another desirable characteristic of measurement is that “meanings” can be given to
scores. That is, we would like to know what a student can actually do if the student
obtained a score of, say, 55 out of 100 on a test. Therefore if student scores can be
linked to the items in some ways, then substantive meanings can be given to scores
in terms of the underlying skills or proficiencies. For example, one would like to
make statements such as

Students who obtain 55 out of 100 on this test are likely to be able to carry out two-digit
multiplications and solve arithmetic change problems, but they will typically have diffi-
culties with multi-step word problems.

When raw scores (percentages of correct responses) are used to measure stu-
dents’ abilities and item difficulties, it is not immediately obvious how one can link
student scores to item scores. For example, Fig. 6.3 shows two scales in relation to
a test, one for item difficulty, and one for person ability. The item difficulty scale on
the left shows that for the set of word problems in a test, the average percentage of
correct responses amounted to 25% for a cohort of students. In contrast, 90% of the
students correctly carried out single digit additions.

Next, let us consider the person ability scale which shows students who obtained
90, 70, 50 and 25% correct on the test. The percentages on the two scales are not
easily matched in any way. For example, can the students who obtained 70% on the
test perform arithmetic with fractions? We cannot make any inference if we do not
know what proportions of items are about single digit addition, multi-step arith-
metic, or other types. It may be the case that 70% of the items are single-digit
addition items, so that the students who obtained 70% correct on the test cannot
perform tasks much more difficult than single-digit addition.

Even if we have information on the composition of the test in terms of the
number of items for each type of problems, it is still a difficult job to match student
scores with tasks. The underlying skills for each test score will need to be
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examined, and descriptions written for each test score. For example, we need to
examine the common items answered correctly by students with a test score of, say,
25 or 50%, and construct descriptions of skills for these scores. No systematic
approach can be taken. When a different test is administered, a new set of
descriptions will need to be developed, as there is no simple and direct relationship
between student scores and item scores.

Estimating Ability Using Item Response Theory

The problems with using raw scores as discussed above can be solved by using
ability estimates from item response theory (IRT) modelling. The main idea of item
response theory is to use a mathematical model for predicting the probability of
success of a person on an item, depending on the person’s “ability” and the item
“difficulty”. Typically, the probability of success on an item for people with varying
ability is plotted as an “item characteristic curve” (ICC). An example ICC is shown
in Fig. 6.4 , where it takes the shape of an elongated letter “S”. The ICC in this
example is a logistic function of the form f xð Þ ¼ ex

1þ ex. An IRT model with a logistic
item response function is called the Rasch model (Rasch 1960). This is the “sim-
plest” IRT model in that the item response function is determined by only one
parameter (the item difficulty parameter). Chapter 7 further explains this mathe-
matical model, and Chaps. 9 and 10 explain two other models. While many dif-
ferent mathematical functions can be used to model the probability of success of a
person on an item, these functions should have three properties. First, the function
should be increasing with ability. That is, if the ability is higher, the probability of
success should also be higher. Second, the function should take on values of x that
ranges between %1 and 1. That is, the ability can range from infinitely low to

Fig. 6.4 An example of an item characteristic curve
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in terms of probability statements, even though we cannot precisely determine
whether a student will successfully answer a question. Since there is an underlying
mathematical function to model student’s item responses, one can make such
probability statements about the chances of a student obtaining a correct answer.
This is an advantage of using a mathematical function to model the probability of
success. Of course, the mathematical model should actually reflect the patterns of
student response data, or else our predictions will be wrong. This is an assumption
underlying the validity of using a particular mathematical model, and this
assumption needs to be checked.

Figure 6.6 shows an example of using item characteristic curves to find the
probabilities of success on three items if the ability of a person (h) is known.
A vertical line can be drawn in Fig. 6.6 to read off the probability of success on
each of the three items for a person with an ability of 0.9.

By defining item difficulty and person ability on the same scale, interpretations
of person scores can be easily provided in terms of the task demands. Figure 6.7
shows an example. The person ability scale on the left and the item difficulty scale
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on the right are linked through the mathematical function of probability of success.
If a student has an ability of h, one can readily compute this student’s chances of
success on items 1 to 6, with item difficulties δ1, δ2, …, δ6, respectively. As one can
describe the underlying skills required to answer each item correctly, one can easily
describe a student’s level of proficiency once we have located the student on the
scale according to his/her ability. For example, a student located at h in Fig. 6.7 will
typically have a 50% chance of successfully carrying out multi-step arithmetic;
more than 50% chance of performing single-digit multiplication; and less than 50%
chance of performing arithmetic with fractions.

Estimation of Ability Using IRT

To explain about how abilities are estimated under IRT, Figs. 6.8, 6.9, 6.10 and
6.11 present a sequence of illustrated steps.

Given the definition of item difficulties, a student located at h on the ability scale
will typically have a 50% chance of successfully answering an item with difficulty
value at h. Put it another way, for a student with an ability h, we expect the student
to answer about 50% of the items correctly for items with difficulty values around h.
Figure 6.8 shows that about 50% of the items located around the ability of a student
are marked correct, and about 50% marked incorrect (a tick shows an item is
marked correct, and a cross shows incorrect).

Linking Students and Items
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Fig. 6.7 Linking students and items through an IRT scale
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Next, notice that in Fig. 6.9 there is a block of items located below the ability of
a student, and that there are more correct answers than incorrect answers. That is,
there are more ticks than crosses for this block of items for this student.

In comparison, Fig. 6.10 shows that the block of items with difficulties higher
than the student’s ability will typically have more incorrect answers than correct

Pattern of Student Responses
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Fig. 6.8 Items at a student’s ability level—about 50% correct
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Fig. 6.9 Items located below a student’s ability level—more than 50% correct
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answers, because the chance of answering these items correctly for the student is
less than 50%.

In real-life, what we observe are the item response patterns of a student on a test,
that is, the item correct-incorrect patterns on the right-side of Fig. 6.10. We do not
know a student’s ability. The goal is to use the item response patterns to find the

Pattern of Student Responses
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More able

Less able
Easy

Less than 
50% chance

Fig. 6.10 Items located above a student’s ability level—less than 50% correct
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Fig. 6.11 Given item response pattern, find student ability
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student’s ability. What we try to identify is the ability region where about equal
numbers of correct and incorrect item responses are located.

Figure 6.11 shows the item response patterns of another student. Can you
estimate where the student’s ability is located?

Examining the item response patterns in Fig. 6.11, we try to find an ability
estimate at which around 50% of the items are correct. In Fig. 6.11, this is close to
the top of the scale. Our guestimate is around the third row of items from the
top. This could be where we locate the student’s ability. Looking for a region where
there are about 50% correct answers is the principle of finding student ability
estimate in IRT. Of course there is an assumption here that the item difficulties are
already known so that we can place item responses at their appropriate places on the
scale. What we have illustrated here is the basic principle of estimation in IRT, but
there are different estimation methods in IRT, and mathematical procedures are
involved rather than the eye-balling procedure as illustrated above.

Invariance of Ability Estimates Under IRT

In an earlier section of this chapter, we discussed about the issues with measure-
ment invariance when raw scores are used. In this section, we illustrate how
measurement invariance is achieved under the IRT framework.

Take the item response pattern in Fig. 6.11 as an example, if easy items have not
been administered, as shown in Fig. 6.12, how would the estimation of ability be
affected?
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More able

Less able
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About 50% 
correct

Fig. 6.12 Easy items are not administered
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can be regarded as close to interval measurement. Nevertheless, the good mea-
surement properties of IRT can be applied to build better assessment systems such
as the use of rotated test booklets and computer adaptive testing. CTT is quite
limited to the analysis of single tests.

Additional Notes
IRT Viewed as a Transformation of Raw Scores

The Rasch model is a particular IRT model. The Rasch model can be
viewed as applying a transformation to the raw scores so that distances
between the locations of two students can be preserved independent of the
particular items administered. The curved line in Fig. 6.2 will be “straight-
ened” through this transformation. Figure 6.13 shows an example of this
transformation. Note that the distance between A and C on the easy test
(horizontal axis) is the same as the distance between A and C on the hard test
(vertical axis).

A crude transformation from raw test score to an IRT ability score is

h ¼ log
p

1" p

! "

where h is IRT ability and p is the raw score in percentage (e.g., p = 0.8, if
the raw score is 80% correct on the test).

A number of points can be made about IRT (Rasch) transformation of raw
scores:
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• The transformation preserves the order of raw scores. That is, Rasch
scores do not alter the ranking of students according to their raw scores.
Technically, the transformation is said to be monotonic. If one is only
interested in ordering students in ability, or items in difficulty, then raw
scores will serve just as well. No IRT is needed.

• There is a one-to-one correspondence between raw scores and Rasch
scores if every student is administered the same test. That is the pattern of
correct/incorrect responses does not play a role in determining the Rasch
score (see Chap. 7 for more details). However, if students take different
tests, as illustrated above with easy and hard tests, and within a computer
adaptive testing environment, then the raw scores and Rasch scores will
not have a one-to-one correspondence. The Rasch scores will take the item
difficulties of the overall test into account.

• When students take the same test, the correlation between raw score and
Rasch score will be close to 1, as a result of the property of the Rasch
model. Occasionally, one sees researchers plotting Rasch scores against
raw scores. The high correlation between these two scores has sometimes
been taken as indications of good fit of the data to the model. This is a
misconception. Actually, even if data mis-fit the model, the correlation
between Rasch scores and raw scores will still be close to one.

How About Other Transformations of Raw Scores, for Example,
Standardised Score (Z-Score) and Percentile Ranks? Do They Preserve
“Distances” Between People?

Using classical test theory approach, raw scores are sometimes trans-
formed to z-scores or percentile ranks. For z-scores, a transformation is
applied to make the mean of the raw scores equal to zero, and the standard
deviation equal to 1. This transformation is linear, so the relative distance
between two points will be the same whether raw scores or z-scores are used.
For example, if A and C are further apart than C and B in raw scores, then the
z-scores will also reflect the same relative difference. Consequently, z-scores
suffer from the same problem as raw scores. That is, z-scores on an easy test
and a hard test will not necessarily preserve the same relative distances
between students.

Transforming raw scores to percentile ranks will solve the problem of
producing differing distances between two people on two different tests. This
is because percentile ranks have relinquished the actual distances between
students, and turned the scores to ranks (ordering) only. So, on the one hand,
the percentile ranks of people on two different tests may indeed be the same,
on the other hand, we have lost the actual distances between students. Raw
scores, while not quite providing an interval scale, offer more information
than just ordinal scales.
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Exercício 2
Hands-on Practices

Task 1

Use simulation to generate raw scores for students on an easy test and a hard test.

Q1. Plot the two test scores on a graph
Q2. Apply a logistic transformation to the raw scores as follows:

Step 1: Compute percentage correct from the raw scores (raw score divided by
possible maximum score). Let p denote percentage correct.

Step 2: Compute transformed score by applying transformation, log(p/(1 − p)),
where log is the natural logarithm. The ratio, p/(1 − p), is referred to as
an “odds”. The results from the transformation of log(p/(1 − p)) are said
to be in the “log of odds unit” (abbreviated as “logit”)

Step 3: Plot the two transformed scores on a graph

Discuss the shapes of the two graphs in terms of measurement invariance. Which
graph is closer to a straight line?

Note: This hands-on practice is to demonstrate IRT as viewed as a transfor-
mation of the raw scores. However, the actual mathematical modelling of IRT is
at the individual item and individual person level, not at the test score level.
In IRT software programs, often logistic transformations applied to the test scores
or to item scores (percentage of students getting an item right), as shown in this
hands-on practice, are used to provide initial values of person and item
parameters.

Task 2

Investigate the relationship between raw scores and transformed logit scores. For
example, if a test has a maximum score of 30, plot raw scores (between 0 and 30)
against transformed scores. What are your observations in terms of the distances
between raw scores and between logit scores? Is the relationship between raw
scores and logit scores a linear one? If not, is there a range between which the
relationship is approximately linear?
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