Bibliotecas
  library(tidyverse)
  library(sjmisc)
 
  library(TAM)
  library(psych)
  library(readxl)
  library(knitr)
  #library(xlsx)

 source("http://www.labape.com.br/rprimi/R/utils_construct_maps.R")
Abre banco
# Abre direto da internet (con é um endereço do arquivo) 
 con<-url("http://www.labape.com.br/rprimi/TRI/2019_slides_exerc/senna_v1_54_ex3.RDS") 
 sennav1 <-  readRDS(con) 

 con<-url("http://www.labape.com.br/rprimi/TRI/2019_slides_exerc/senna_v1_54_ex3_dic.RDS") 
 dic <-  readRDS(con)
# abre fazendo download do arquivo xlsx e salvando como temp.xlsx no diretório local e 
# lendo com a função read_excel
path <- "http://www.labape.com.br/rprimi/TRI/2019_slides_exerc/senna_v1_54_ex3_itemdic.xlsx"
  
  download.file(url = path, destfile = "temp.xlsx", mode="wb")
  dic <-  read_excel("temp.xlsx") 
Examina base e prepara variáveis
  dic_c <- dic %>% filter(factor == "C")
  vars_c <- dic_c$coditem
  labels_c <- dic_c$text
  sennav1 %>% select(dic_c$coditem) %>% map(frq)
Explorando os itens negativos, a relação entre itens semanticamente opostos
sennav1 %>% ggplot(aes(x=i83.C.Conc.11)) +
    geom_histogram(
      aes(y = (..count..)/sum(..count..), group = 1),
      binwidth = 1, 
      color = "white", 
      fill = "blue",
      alpha = 1/2
      ) + 
   theme_minimal() +
    ggtitle(labels_c[7])

sennav1 %>% ggplot(aes(x=i46.C.Conc.00)) +
    geom_histogram(
      aes(y = (..count..)/sum(..count..), group = 1),
      binwidth = 1, 
      color = "white", 
      fill = "red",
      alpha = 1/2
      ) + theme_minimal() +
    ggtitle(labels_c[3])

  sennav1 %>% ggplot(aes(x=i36.C.Conc.00)) +
    geom_histogram(
      aes(y = (..count..)/sum(..count..), group = 1),
      binwidth = 1, 
      color = "white", 
      fill = "red",
      alpha = 1/2
      ) + theme_minimal() +
    ggtitle(labels_c[2])

  sennav1 %>% select(i36.C.Conc.00, i83.C.Conc.11) %>%
    group_by(i36.C.Conc.00, i83.C.Conc.11) %>%
    count %>% 
    na.omit %>%
    ggplot(aes(y = i36.C.Conc.00, x = i83.C.Conc.11, fill = n)) +
     geom_tile(color = "white") +
    coord_fixed() +
    geom_text(aes(label = n), size=4, color = "white") +
    theme(legend.position="none") +
  theme_minimal()

Análise psicométrica classica
 sennav1 %>% select(dic_c$coditem) %>%
    mutate_if(dic_c$pole == 0, funs(6 -.)) %>% # inverte negativos
    na.omit %>%           
   alpha()
## 
## Reliability analysis   
## Call: alpha(x = .)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.83      0.83    0.83      0.36   5 0.0026  3.4 0.73     0.37
## 
##  lower alpha upper     95% confidence boundaries
## 0.82 0.83 0.83 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## i51.C.Ord.00       0.84      0.84    0.84      0.40 5.3   0.0026 0.013
## i36.C.Conc.00      0.83      0.84    0.83      0.39 5.1   0.0026 0.015
## i46.C.Conc.00      0.81      0.82    0.81      0.36 4.4   0.0029 0.020
## i06.C.Ord.10       0.80      0.80    0.80      0.34 4.1   0.0031 0.015
## i11.C.Ord.10       0.81      0.81    0.81      0.35 4.3   0.0030 0.017
## i77.C.SD.11        0.80      0.80    0.80      0.34 4.0   0.0032 0.015
## i83.C.Conc.11      0.80      0.80    0.80      0.34 4.0   0.0031 0.016
## i89.C.Achv.11      0.81      0.81    0.81      0.35 4.4   0.0030 0.017
## i91.C.SD.11        0.81      0.81    0.81      0.35 4.3   0.0030 0.017
##               med.r
## i51.C.Ord.00   0.43
## i36.C.Conc.00  0.42
## i46.C.Conc.00  0.41
## i06.C.Ord.10   0.32
## i11.C.Ord.10   0.34
## i77.C.SD.11    0.32
## i83.C.Conc.11  0.32
## i89.C.Achv.11  0.34
## i91.C.SD.11    0.34
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean   sd
## i51.C.Ord.00  9383  0.46  0.46  0.34   0.31  3.7 1.12
## i36.C.Conc.00 9383  0.52  0.50  0.40   0.36  3.2 1.24
## i46.C.Conc.00 9383  0.67  0.65  0.60   0.54  3.7 1.21
## i06.C.Ord.10  9383  0.72  0.73  0.70   0.63  3.3 1.10
## i11.C.Ord.10  9383  0.69  0.69  0.64   0.57  3.1 1.16
## i77.C.SD.11   9383  0.75  0.75  0.73   0.66  3.3 1.13
## i83.C.Conc.11 9383  0.74  0.75  0.72   0.66  3.6 1.02
## i89.C.Achv.11 9383  0.64  0.66  0.60   0.54  3.4 0.97
## i91.C.SD.11   9383  0.69  0.69  0.64   0.58  3.3 1.14
## 
## Non missing response frequency for each item
##                  1    2    3    4    5 miss
## i51.C.Ord.00  0.05 0.09 0.26 0.31 0.28    0
## i36.C.Conc.00 0.12 0.17 0.28 0.25 0.17    0
## i46.C.Conc.00 0.07 0.10 0.22 0.29 0.31    0
## i06.C.Ord.10  0.05 0.17 0.36 0.25 0.16    0
## i11.C.Ord.10  0.08 0.24 0.33 0.20 0.15    0
## i77.C.SD.11   0.06 0.17 0.34 0.25 0.18    0
## i83.C.Conc.11 0.03 0.11 0.31 0.34 0.21    0
## i89.C.Achv.11 0.03 0.12 0.40 0.31 0.15    0
## i91.C.SD.11   0.07 0.19 0.30 0.29 0.15    0
  sennav1 %>% select(x=i46.C.Conc.00, i36.C.Conc.00, i83.C.Conc.11) %>%
    corr.test %>% .$r %>% kable(digits=2)

   r <- cor(sennav1[ , c(vars_c, "acq_avr")],use="pair")
  
    library(d3heatmap)
   d3heatmap(r, xaxis_font_size = 10, yaxis_font_size = 10)
   
   r <- partial.r(data = r,  x = 1:9, y = 10)
  
  d3heatmap(r, xaxis_font_size = 10, yaxis_font_size = 10)
Calibra modelo de créditos parciais para o fator C (usando jml)
  pc_C_jml  <- sennav1 %>% select(dic_c$coditem) %>%
    mutate_if(dic_c$pole == 0, funs(6 -.)) %>% # inverte negativos
    na.omit %>%                                # elimina missings
    mutate_all(funs(. -1)) %>%                 # tranforma escores 1-5 para 0-4
     tam.jml(ndim = 1)
## ....................................................
## Iteration 1     2019-10-29 18:40:06
##  MLE/WLE estimation        |-----
##  Item parameter estimation |----------
##   Deviance= 201832.6629
##   Maximum MLE/WLE change: 1.572637
##   Maximum item parameter change: 0.763102
## ....................................................
## Iteration 2     2019-10-29 18:40:06
##  MLE/WLE estimation        |----
##  Item parameter estimation |----------
##   Deviance= 201131.6336 | Deviance change: 701.0294
##   Maximum MLE/WLE change: 0.521453
##   Maximum item parameter change: 0.247805
## ....................................................
## Iteration 3     2019-10-29 18:40:06
##  MLE/WLE estimation        |----
##  Item parameter estimation |----------
##   Deviance= 200991.454 | Deviance change: 140.1796
##   Maximum MLE/WLE change: 0.196873
##   Maximum item parameter change: 0.094627
## ....................................................
## Iteration 4     2019-10-29 18:40:06
##  MLE/WLE estimation        |---
##  Item parameter estimation |----------
##   Deviance= 200963.0817 | Deviance change: 28.3723
##   Maximum MLE/WLE change: 0.072839
##   Maximum item parameter change: 0.042746
## ....................................................
## Iteration 5     2019-10-29 18:40:06
##  MLE/WLE estimation        |---
##  Item parameter estimation |---------
##   Deviance= 200957.8889 | Deviance change: 5.1928
##   Maximum MLE/WLE change: 0.03185
##   Maximum item parameter change: 0.019746
## ....................................................
## Iteration 6     2019-10-29 18:40:06
##  MLE/WLE estimation        |--
##  Item parameter estimation |--------
##   Deviance= 200957.1615 | Deviance change: 0.7274
##   Maximum MLE/WLE change: 0.014334
##   Maximum item parameter change: 0.009091
## ....................................................
## Iteration 7     2019-10-29 18:40:06
##  MLE/WLE estimation        |--
##  Item parameter estimation |-------
##   Deviance= 200957.1689 | Deviance change: -0.0074
##   Maximum MLE/WLE change: 0.006555
##   Maximum item parameter change: 0.004192
## ....................................................
## Iteration 8     2019-10-29 18:40:06
##  MLE/WLE estimation        |--
##  Item parameter estimation |------
##   Deviance= 200957.2451 | Deviance change: -0.0762
##   Maximum MLE/WLE change: 0.003004
##   Maximum item parameter change: 0.00198
## ....................................................
## Iteration 9     2019-10-29 18:40:06
##  MLE/WLE estimation        |--
##  Item parameter estimation |----
##   Deviance= 200957.2949 | Deviance change: -0.0498
##   Maximum MLE/WLE change: 0.001378
##   Maximum item parameter change: 0.000847
## ....................................................
## Iteration 10     2019-10-29 18:40:06
##  MLE/WLE estimation        |--
##  Item parameter estimation |---
##   Deviance= 200957.3207 | Deviance change: -0.0258
##   Maximum MLE/WLE change: 0.000658
##   Maximum item parameter change: 0.000363
## ....................................................
## Iteration 11     2019-10-29 18:40:06
##  MLE/WLE estimation        |--
##  Item parameter estimation |--
##   Deviance= 200957.3332 | Deviance change: -0.0125
##   Maximum MLE/WLE change: 0.000269
##   Maximum item parameter change: 0.000194
## ....................................................
## Iteration 12     2019-10-29 18:40:06
##  MLE/WLE estimation        |--
##  Item parameter estimation |-
##   Deviance= 200957.3377 | Deviance change: -0.0045
##   Maximum MLE/WLE change: 0.000131
##   Maximum item parameter change: 8.9e-05
## ....................................................
## Iteration 13     2019-10-29 18:40:06
##  MLE/WLE estimation        |--
##  Item parameter estimation |-
##   Deviance= 200957.3408 | Deviance change: -0.0031
##   Maximum MLE/WLE change: 7.2e-05
##   Maximum item parameter change: 7e-05
## 
##  MLE/WLE estimation        |------
## ....................................................
## 
## Start:  2019-10-29 18:40:06
## End:  2019-10-29 18:40:06 
## Time difference of 0.4177911 secs
  summary(pc_C_jml)
## ------------------------------------------------------------
## TAM 3.1-45 (2019-03-18 16:53:26) 
## R version 3.5.1 (2018-07-02) x86_64, darwin15.6.0 | nodename=MacBookPro2018.local | login=rprimi 
## 
## Start of Analysis: 2019-10-29 18:40:06 
## End of Analysis: 2019-10-29 18:40:06 
## Time difference of 0.4177911 secs
## Computation time: 0.4177911 
## 
## Joint Maximum Likelihood Estimation in TAM 
## 
## IRT Model
## Call:
## tam.jml(resp = ., ndim = 1)
## 
## ------------------------------------------------------------
## Number of iterations= 13 
## 
## Deviance= 200957.3  | Log Likelihood= -100478.7 
## Number of persons= 9383 
## Number of items= 9 
## 
## Item Parameters Xsi
##             xsi.label xsi.index    xsi se.xsi
## 1   i51.C.Ord.00_Cat1         1 -1.577  0.053
## 2   i51.C.Ord.00_Cat2         2 -1.533  0.034
## 3   i51.C.Ord.00_Cat3         3 -0.345  0.025
## 4   i51.C.Ord.00_Cat4         4  0.481  0.027
## 5  i36.C.Conc.00_Cat1         5 -1.112  0.036
## 6  i36.C.Conc.00_Cat2         6 -0.796  0.027
## 7  i36.C.Conc.00_Cat3         7  0.156  0.026
## 8  i36.C.Conc.00_Cat4         8  1.035  0.033
## 9  i46.C.Conc.00_Cat1         9 -1.327  0.046
## 10 i46.C.Conc.00_Cat2        10 -1.258  0.033
## 11 i46.C.Conc.00_Cat3        11 -0.419  0.026
## 12 i46.C.Conc.00_Cat4        12  0.307  0.027
## 13  i06.C.Ord.10_Cat1        13 -1.919  0.050
## 14  i06.C.Ord.10_Cat2        14 -1.108  0.028
## 15  i06.C.Ord.10_Cat3        15  0.327  0.025
## 16  i06.C.Ord.10_Cat4        16  1.037  0.033
## 17  i11.C.Ord.10_Cat1        17 -1.716  0.041
## 18  i11.C.Ord.10_Cat2        18 -0.617  0.026
## 19  i11.C.Ord.10_Cat3        19  0.561  0.027
## 20  i11.C.Ord.10_Cat4        20  1.028  0.036
## 21   i77.C.SD.11_Cat1        21 -1.919  0.050
## 22   i77.C.SD.11_Cat2        22 -1.042  0.028
## 23   i77.C.SD.11_Cat3        23  0.278  0.025
## 24   i77.C.SD.11_Cat4        24  0.882  0.032
## 25 i83.C.Conc.11_Cat1        25 -2.379  0.070
## 26 i83.C.Conc.11_Cat2        26 -1.509  0.034
## 27 i83.C.Conc.11_Cat3        27 -0.190  0.024
## 28 i83.C.Conc.11_Cat4        28  0.905  0.030
## 29 i89.C.Achv.11_Cat1        29 -2.370  0.069
## 30 i89.C.Achv.11_Cat2        30 -1.592  0.033
## 31 i89.C.Achv.11_Cat3        31  0.188  0.024
## 32 i89.C.Achv.11_Cat4        32  1.275  0.034
## 33   i91.C.SD.11_Cat1        33 -1.736  0.045
## 34   i91.C.SD.11_Cat2        34 -0.839  0.028
## 35   i91.C.SD.11_Cat3        35  0.062  0.025
## 36   i91.C.SD.11_Cat4        36  1.220  0.034
  fit <- tam.jml.fit(pc_C_jml)
  fit$fit.item
##                        item outfitItem outfitItem_t infitItem infitItem_t
## i51.C.Ord.00   i51.C.Ord.00  1.4652471    23.226296 1.3569468   22.235892
## i36.C.Conc.00 i36.C.Conc.00  1.4530288    25.126186 1.3528156   23.259053
## i46.C.Conc.00 i46.C.Conc.00  0.9434446    -3.092075 0.9370100   -4.470045
## i06.C.Ord.10   i06.C.Ord.10  0.7619128   -16.759013 0.7669273  -18.238869
## i11.C.Ord.10   i11.C.Ord.10  0.9001655    -6.614164 0.8939265   -7.970278
## i77.C.SD.11     i77.C.SD.11  0.7181314   -19.787725 0.7264913  -21.884254
## i83.C.Conc.11 i83.C.Conc.11  0.6788896   -22.988429 0.6925441  -24.425037
## i89.C.Achv.11 i89.C.Achv.11  0.8738759    -8.626175 0.8704372   -9.473562
## i91.C.SD.11     i91.C.SD.11  0.8831716    -8.029612 0.8727974   -9.670340
  plot(pc_C_jml, ngroups = 24)

## ....................................................
##  Plots exported in png format into folder:
##  /Users/rprimi/Dropbox (Personal)/TRI/2019_slides_exerc/Plots
  plot(pc_C_jml,  type = "items")

## ....................................................
##  Plots exported in png format into folder:
##  /Users/rprimi/Dropbox (Personal)/TRI/2019_slides_exerc/Plots
Mapa de construto
   pc_C  <- sennav1 %>% select(dic_c$coditem) %>%
    mutate_if(dic_c$pole == 0, funs(6 -.)) %>% # inverte negativos
    mutate_all(funs(. -1)) %>%                 # tranforma escores 1-5 para 0-4
    tam.mml(irtmodel = "PCM" )
## ....................................................
## Processing Data      2019-10-29 18:40:09 
##     * Response Data: 11249 Persons and  9 Items 
##     * Numerical integration with 21 nodes
##     * Created Design Matrices   ( 2019-10-29 18:40:09 )
##     * Calculated Sufficient Statistics   ( 2019-10-29 18:40:10 )
## ....................................................
## Iteration 1     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 267613.0422
##   Maximum item intercept parameter change: 0.65952
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.155948
## ....................................................
## Iteration 2     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 263472.3794 | Absolute change: 4140.663 | Relative change: 0.01571574
##   Maximum item intercept parameter change: 0.494493
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.166203
## ....................................................
## Iteration 3     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262593.7818 | Absolute change: 878.5976 | Relative change: 0.00334584
##   Maximum item intercept parameter change: 0.130315
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.121802
## ....................................................
## Iteration 4     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262305.3891 | Absolute change: 288.3927 | Relative change: 0.00109945
##   Maximum item intercept parameter change: 0.069541
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.070951
## ....................................................
## Iteration 5     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262188.9176 | Absolute change: 116.4715 | Relative change: 0.00044423
##   Maximum item intercept parameter change: 0.044501
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.043275
## ....................................................
## Iteration 6     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262138.9315 | Absolute change: 49.986 | Relative change: 0.00019069
##   Maximum item intercept parameter change: 0.026189
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.02709
## ....................................................
## Iteration 7     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262116.3339 | Absolute change: 22.5976 | Relative change: 8.621e-05
##   Maximum item intercept parameter change: 0.020116
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.017424
## ....................................................
## Iteration 8     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262105.6179 | Absolute change: 10.716 | Relative change: 4.088e-05
##   Maximum item intercept parameter change: 0.012089
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.011353
## ....................................................
## Iteration 9     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262100.4057 | Absolute change: 5.2122 | Relative change: 1.989e-05
##   Maximum item intercept parameter change: 0.008415
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.007294
## ....................................................
## Iteration 10     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262097.5434 | Absolute change: 2.8623 | Relative change: 1.092e-05
##   Maximum item intercept parameter change: 0.006195
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.004862
## ....................................................
## Iteration 11     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262095.8528 | Absolute change: 1.6906 | Relative change: 6.45e-06
##   Maximum item intercept parameter change: 0.004662
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.003303
## ....................................................
## Iteration 12     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262094.7783 | Absolute change: 1.0746 | Relative change: 4.1e-06
##   Maximum item intercept parameter change: 0.003581
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.002319
## ....................................................
## Iteration 13     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262094.0693 | Absolute change: 0.7089 | Relative change: 2.7e-06
##   Maximum item intercept parameter change: 0.002862
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.001686
## ....................................................
## Iteration 14     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262093.6007 | Absolute change: 0.4686 | Relative change: 1.79e-06
##   Maximum item intercept parameter change: 0.002256
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.00127
## ....................................................
## Iteration 15     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262093.2826 | Absolute change: 0.3182 | Relative change: 1.21e-06
##   Maximum item intercept parameter change: 0.00185
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000948
## ....................................................
## Iteration 16     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262093.0584 | Absolute change: 0.2241 | Relative change: 8.6e-07
##   Maximum item intercept parameter change: 0.001514
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000721
## ....................................................
## Iteration 17     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262092.9002 | Absolute change: 0.1582 | Relative change: 6e-07
##   Maximum item intercept parameter change: 0.00125
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000564
## ....................................................
## Iteration 18     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262092.7864 | Absolute change: 0.1137 | Relative change: 4.3e-07
##   Maximum item intercept parameter change: 0.001032
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000431
## ....................................................
## Iteration 19     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262092.7038 | Absolute change: 0.0827 | Relative change: 3.2e-07
##   Maximum item intercept parameter change: 0.00086
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000332
## ....................................................
## Iteration 20     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262092.6433 | Absolute change: 0.0605 | Relative change: 2.3e-07
##   Maximum item intercept parameter change: 0.000722
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000261
## ....................................................
## Iteration 21     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262092.5991 | Absolute change: 0.0442 | Relative change: 1.7e-07
##   Maximum item intercept parameter change: 0.00059
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.00021
## ....................................................
## Iteration 22     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262092.5665 | Absolute change: 0.0325 | Relative change: 1.2e-07
##   Maximum item intercept parameter change: 0.000508
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000167
## ....................................................
## Iteration 23     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262092.5424 | Absolute change: 0.0241 | Relative change: 9e-08
##   Maximum item intercept parameter change: 0.000436
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.000134
## ....................................................
## Iteration 24     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262092.5245 | Absolute change: 0.0179 | Relative change: 7e-08
##   Maximum item intercept parameter change: 0.000374
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 0.00011
## ....................................................
## Iteration 25     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262092.5111 | Absolute change: 0.0133 | Relative change: 5e-08
##   Maximum item intercept parameter change: 0.00032
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 9e-05
## ....................................................
## Iteration 26     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262092.5012 | Absolute change: 0.0099 | Relative change: 4e-08
##   Maximum item intercept parameter change: 0.000275
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 7.5e-05
## ....................................................
## Iteration 27     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262092.4938 | Absolute change: 0.0074 | Relative change: 3e-08
##   Maximum item intercept parameter change: 0.000236
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 6.3e-05
## ....................................................
## Iteration 28     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262092.4884 | Absolute change: 0.0054 | Relative change: 2e-08
##   Maximum item intercept parameter change: 0.000203
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 5.5e-05
## ....................................................
## Iteration 29     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262092.4843 | Absolute change: 0.0041 | Relative change: 2e-08
##   Maximum item intercept parameter change: 0.000174
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 4.6e-05
## ....................................................
## Iteration 30     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262092.4813 | Absolute change: 0.003 | Relative change: 1e-08
##   Maximum item intercept parameter change: 0.000149
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 3.9e-05
## ....................................................
## Iteration 31     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262092.479 | Absolute change: 0.0023 | Relative change: 1e-08
##   Maximum item intercept parameter change: 0.000129
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 3.3e-05
## ....................................................
## Iteration 32     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262092.4773 | Absolute change: 0.0017 | Relative change: 1e-08
##   Maximum item intercept parameter change: 0.000111
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 2.8e-05
## ....................................................
## Iteration 33     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262092.476 | Absolute change: 0.0013 | Relative change: 0
##   Maximum item intercept parameter change: 9.6e-05
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 2.4e-05
## ....................................................
## Iteration 34     2019-10-29 18:40:10
## E Step
## M Step Intercepts   |----
##   Deviance = 262092.475 | Absolute change: 0.001 | Relative change: 0
##   Maximum item intercept parameter change: 8.3e-05
##   Maximum item slope parameter change: 0
##   Maximum regression parameter change: 0
##   Maximum variance parameter change: 2e-05
## ....................................................
## Item Parameters
##    xsi.index          xsi.label     est
## 1          1  i51.C.Ord.00_Cat1 -1.4658
## 2          2  i51.C.Ord.00_Cat2 -1.5354
## 3          3  i51.C.Ord.00_Cat3 -0.2853
## 4          4  i51.C.Ord.00_Cat4  0.4178
## 5          5 i36.C.Conc.00_Cat1 -1.0007
## 6          6 i36.C.Conc.00_Cat2 -0.7326
## 7          7 i36.C.Conc.00_Cat3  0.1900
## 8          8 i36.C.Conc.00_Cat4  0.9531
## 9          9 i46.C.Conc.00_Cat1 -1.2001
## 10        10 i46.C.Conc.00_Cat2 -1.1976
## 11        11 i46.C.Conc.00_Cat3 -0.3775
## 12        12 i46.C.Conc.00_Cat4  0.2629
## 13        13  i06.C.Ord.10_Cat1 -1.8128
## 14        14  i06.C.Ord.10_Cat2 -1.0699
## 15        15  i06.C.Ord.10_Cat3  0.3958
## 16        16  i06.C.Ord.10_Cat4  0.9461
## 17        17  i11.C.Ord.10_Cat1 -1.6292
## 18        18  i11.C.Ord.10_Cat2 -0.5619
## 19        19  i11.C.Ord.10_Cat3  0.6342
## 20        20  i11.C.Ord.10_Cat4  0.8921
## 21        21   i77.C.SD.11_Cat1 -1.8057
## 22        22   i77.C.SD.11_Cat2 -1.0159
## 23        23   i77.C.SD.11_Cat3  0.3515
## 24        24   i77.C.SD.11_Cat4  0.7918
## 25        25 i83.C.Conc.11_Cat1 -2.2297
## 26        26 i83.C.Conc.11_Cat2 -1.4733
## 27        27 i83.C.Conc.11_Cat3 -0.1257
## 28        28 i83.C.Conc.11_Cat4  0.8509
## 29        29 i89.C.Achv.11_Cat1 -2.2233
## 30        30 i89.C.Achv.11_Cat2 -1.5677
## 31        31 i89.C.Achv.11_Cat3  0.2809
## 32        32 i89.C.Achv.11_Cat4  1.2200
## 33        33   i91.C.SD.11_Cat1 -1.6386
## 34        34   i91.C.SD.11_Cat2 -0.7918
## 35        35   i91.C.SD.11_Cat3  0.0905
## 36        36   i91.C.SD.11_Cat4  1.1476
## ...................................
## Regression Coefficients
##      [,1]
## [1,]    0
## 
## Variance:
##        [,1]
## [1,] 0.6728
## 
## 
## EAP Reliability:
## [1] 0.804
## 
## -----------------------------
## Start:  2019-10-29 18:40:09
## End:  2019-10-29 18:40:10 
## Time difference of 0.7537041 secs
    summary(pc_C)
## ------------------------------------------------------------
## TAM 3.1-45 (2019-03-18 16:53:26) 
## R version 3.5.1 (2018-07-02) x86_64, darwin15.6.0 | nodename=MacBookPro2018.local | login=rprimi 
## 
## Date of Analysis: 2019-10-29 18:40:10 
## Time difference of 0.7537041 secs
## Computation time: 0.7537041 
## 
## Multidimensional Item Response Model in TAM 
## 
## IRT Model: PCM
## Call:
## tam.mml(resp = ., irtmodel = "PCM")
## 
## ------------------------------------------------------------
## Number of iterations = 34 
## Numeric integration with 21 integration points
## 
## Deviance = 262092.5 
## Log likelihood = -131046.2 
## Number of persons = 11249 
## Number of persons used = 11029 
## Number of items = 9 
## Number of estimated parameters = 37 
##     Item threshold parameters = 36 
##     Item slope parameters = 0 
##     Regression parameters = 0 
##     Variance/covariance parameters = 1 
## 
## AIC = 262166  | penalty = 74    | AIC=-2*LL + 2*p 
## AIC3 = 262203  | penalty = 111    | AIC3=-2*LL + 3*p 
## BIC = 262437  | penalty = 344.41    | BIC=-2*LL + log(n)*p 
## aBIC = 262319  | penalty = 226.81    | aBIC=-2*LL + log((n-2)/24)*p  (adjusted BIC) 
## CAIC = 262474  | penalty = 381.41    | CAIC=-2*LL + [log(n)+1]*p  (consistent AIC) 
## AICc = 262167  | penalty = 74.26    | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1)  (bias corrected AIC) 
## 
## ------------------------------------------------------------
## EAP Reliability
## [1] 0.804
## ------------------------------------------------------------
## Covariances and Variances
##       [,1]
## [1,] 0.673
## ------------------------------------------------------------
## Correlations and Standard Deviations (in the diagonal)
##      [,1]
## [1,] 0.82
## ------------------------------------------------------------
## Regression Coefficients
##      [,1]
## [1,]    0
## ------------------------------------------------------------
## Item Parameters -A*Xsi
##                        item     N     M xsi.item AXsi_.Cat1 AXsi_.Cat2
## i51.C.Ord.00   i51.C.Ord.00 10685 2.685   -0.717     -1.466     -3.001
## i36.C.Conc.00 i36.C.Conc.00 10605 2.168   -0.148     -1.001     -1.733
## i46.C.Conc.00 i46.C.Conc.00 10717 2.657   -0.628     -1.200     -2.398
## i06.C.Ord.10   i06.C.Ord.10 10629 2.295   -0.385     -1.813     -2.883
## i11.C.Ord.10   i11.C.Ord.10 10671 2.081   -0.166     -1.629     -2.191
## i77.C.SD.11     i77.C.SD.11 10731 2.324   -0.420     -1.806     -2.822
## i83.C.Conc.11 i83.C.Conc.11 10689 2.583   -0.745     -2.230     -3.703
## i89.C.Achv.11 i89.C.Achv.11 10708 2.412   -0.573     -2.223     -3.791
## i91.C.SD.11     i91.C.SD.11 10691 2.267   -0.298     -1.639     -2.431
##               AXsi_.Cat3 AXsi_.Cat4 B.Cat1.Dim1 B.Cat2.Dim1 B.Cat3.Dim1
## i51.C.Ord.00      -3.287     -2.869           1           2           3
## i36.C.Conc.00     -1.543     -0.590           1           2           3
## i46.C.Conc.00     -2.775     -2.513           1           2           3
## i06.C.Ord.10      -2.487     -1.541           1           2           3
## i11.C.Ord.10      -1.557     -0.665           1           2           3
## i77.C.SD.11       -2.470     -1.679           1           2           3
## i83.C.Conc.11     -3.829     -2.978           1           2           3
## i89.C.Achv.11     -3.510     -2.290           1           2           3
## i91.C.SD.11       -2.340     -1.193           1           2           3
##               B.Cat4.Dim1
## i51.C.Ord.00            4
## i36.C.Conc.00           4
## i46.C.Conc.00           4
## i06.C.Ord.10            4
## i11.C.Ord.10            4
## i77.C.SD.11             4
## i83.C.Conc.11           4
## i89.C.Achv.11           4
## i91.C.SD.11             4
## 
## Item Parameters Xsi
##                       xsi se.xsi
## i51.C.Ord.00_Cat1  -1.466  0.048
## i51.C.Ord.00_Cat2  -1.535  0.031
## i51.C.Ord.00_Cat3  -0.285  0.023
## i51.C.Ord.00_Cat4   0.418  0.024
## i36.C.Conc.00_Cat1 -1.001  0.033
## i36.C.Conc.00_Cat2 -0.733  0.025
## i36.C.Conc.00_Cat3  0.190  0.023
## i36.C.Conc.00_Cat4  0.953  0.029
## i46.C.Conc.00_Cat1 -1.200  0.041
## i46.C.Conc.00_Cat2 -1.198  0.029
## i46.C.Conc.00_Cat3 -0.377  0.023
## i46.C.Conc.00_Cat4  0.263  0.024
## i06.C.Ord.10_Cat1  -1.813  0.044
## i06.C.Ord.10_Cat2  -1.070  0.026
## i06.C.Ord.10_Cat3   0.396  0.023
## i06.C.Ord.10_Cat4   0.946  0.029
## i11.C.Ord.10_Cat1  -1.629  0.037
## i11.C.Ord.10_Cat2  -0.562  0.024
## i11.C.Ord.10_Cat3   0.634  0.024
## i11.C.Ord.10_Cat4   0.892  0.031
## i77.C.SD.11_Cat1   -1.806  0.044
## i77.C.SD.11_Cat2   -1.016  0.026
## i77.C.SD.11_Cat3    0.352  0.023
## i77.C.SD.11_Cat4    0.792  0.028
## i83.C.Conc.11_Cat1 -2.230  0.060
## i83.C.Conc.11_Cat2 -1.473  0.030
## i83.C.Conc.11_Cat3 -0.126  0.022
## i83.C.Conc.11_Cat4  0.851  0.026
## i89.C.Achv.11_Cat1 -2.223  0.059
## i89.C.Achv.11_Cat2 -1.568  0.029
## i89.C.Achv.11_Cat3  0.281  0.022
## i89.C.Achv.11_Cat4  1.220  0.030
## i91.C.SD.11_Cat1   -1.639  0.040
## i91.C.SD.11_Cat2   -0.792  0.025
## i91.C.SD.11_Cat3    0.091  0.023
## i91.C.SD.11_Cat4    1.148  0.030
## 
## Item Parameters in IRT parameterization
##            item alpha   beta tau.Cat1 tau.Cat2 tau.Cat3 tau.Cat4
## 1  i51.C.Ord.00     1 -0.717   -0.749   -0.818    0.432    1.135
## 2 i36.C.Conc.00     1 -0.148   -0.853   -0.585    0.338    1.101
## 3 i46.C.Conc.00     1 -0.628   -0.572   -0.570    0.251    0.891
## 4  i06.C.Ord.10     1 -0.385   -1.428   -0.685    0.781    1.331
## 5  i11.C.Ord.10     1 -0.166   -1.463   -0.396    0.800    1.058
## 6   i77.C.SD.11     1 -0.420   -1.386   -0.596    0.771    1.211
## 7 i83.C.Conc.11     1 -0.745   -1.485   -0.729    0.619    1.595
## 8 i89.C.Achv.11     1 -0.573   -1.651   -0.995    0.853    1.793
## 9   i91.C.SD.11     1 -0.298   -1.341   -0.494    0.389    1.446
    IRT.WrightMap(pc_C, label.items = labels_c)

    tam.threshold(pc_C)
##                    Cat1       Cat2       Cat3      Cat4
## i51.C.Ord.00  -2.017548 -1.2876892 -0.3355408 0.7506409
## i36.C.Conc.00 -1.460541 -0.6319885  0.2101135 1.2794495
## i46.C.Conc.00 -1.752960 -1.0633850 -0.3408508 0.6246643
## i06.C.Ord.10  -2.131073 -0.9690857  0.2527771 1.3103943
## i11.C.Ord.10  -1.883514 -0.5754089  0.4679260 1.3428040
## i77.C.SD.11   -2.115326 -0.9430847  0.2005920 1.1866150
## i83.C.Conc.11 -2.546906 -1.3876648 -0.1674500 1.1206970
## i89.C.Achv.11 -2.555878 -1.3905945  0.1604919 1.4918518
## i91.C.SD.11   -1.945221 -0.8103333  0.1509705 1.4089050
Mapa de construto: tentativa 2
 library(WrightMap)

 thurst_gam <- as.data.frame(tam.threshold(pc_C))
 thurst_gam <- row_means( thurst_gam, n = 4)
 thurst_gam$item_label  <- dic_c$text
 thurst_gam <- thurst_gam %>%  arrange(rowmeans)
 names(thurst_gam)[1:4] <-c("s2", "s3", "s4", "s5" )
 
 thetas <- pc_C$person$EAP
 
 
 summary(thetas)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
## -2.625638 -0.503487  0.000000 -0.001252  0.455481  2.029737
# Mapa mais elaborado
 
# Cores dos thresholds
  library(RColorBrewer)
  cores <- rep(brewer.pal(4, "Set1"), 9)
  threshold_col <- matrix(cores, byrow = TRUE, ncol = 4)
  
 
# Mapa de construto
   wrightMap(thetas, thurst_gam[ , 1:4],  
            main.title = "",
            item.prop = 0.75,                   # Proporçao espaço do item/theta
            show.thr.lab= TRUE,                # Nao mostra label dos thresholds
            thr.sym.col.fg = threshold_col,             # Colori os thresholds
            thr.sym.col.bg = threshold_col,
            thr.sym.cex = .8,                   # tamanho dos simbolos do thresshold
            axis.items="",                      # elimina label do eixo x
            label.items.srt=25,                 # ajusta item label para vertical
            label.items.cex = .45,               # tamanho da fonte dos item
            label.items = thurst_gam$item_label, # label dos itens 
            return.thresholds = FALSE, cutpoints = c(-.50, 0, .45)
     )

Mapa de construto: tentativa 2

ver: https://cran.r-project.org/web/packages/eRm/vignettes/eRm.pdf

  library(eRm)
  res.pcm   <- sennav1 %>% select(dic_c$coditem) %>%
      mutate_if(dic_c$pole == 0, funs(6 -.)) %>% # inverte negativos
      mutate_all(funs(. -1)) %>%
      na.omit %>%
      PCM

 plotPImap(res.pcm  , sorted = TRUE )

Mapa de construto: tentativa 3
person_item_map_v2( 
   item_tresh =  tam.threshold(pc_C),
  coditem = dic_c$coditem,
  item_text = dic_c$text,
  pole = dic_c$pole,
  theta = pc_C$person$EAP
  )

describe_likert5_items(
  data = sennav1[ , dic_c$coditem],
  item_tresh =  tam.threshold(pc_C),
  coditem = dic_c$coditem,
  item_text = dic_c$text,
  pole = dic_c$pole
)

Mapa de construto: tentativa 4. Agora Sim!
person_item_map_v3( 
   item_tresh =  tam.threshold(pc_C),
  coditem = dic_c$coditem,
  item_text = dic_c$text,
  pole = dic_c$pole,
  theta = pc_C$person$EAP,
  size_categ_label = 3,
  size_bar = 4.5,
   item_text_max = 32
  )

Tente você