Comparação dos modelos de Rasch e de três paràmetros nas calibrações dos paràmetros dos itens do pré-teste da Prova Nacional para o Ingresso na Carreira Docente

Ricardo Primi (Laboratório de Avaliação Psicológica e Educacional - LabAPE,
Universidade São Francisco, Itatiba) \&
Alexandre José de Souza Peres (Instituto Nacional de Estudos e Pesquisas
Educacionais Anísio Teixeira - INEP)

Batalha ...

$$
P_{i}(\theta)=\frac{e^{D\left(\theta-b_{i}\right)}}{1+e^{D\left(\theta-b_{i}\right)}} \quad \text { vs } \quad P_{i}(\theta)=c_{i}+\left(1-c_{i}\right) \frac{e^{D a_{i}\left(\theta-b_{i}\right)}}{1+e^{D a_{i}\left(\theta-b_{i}\right)}}
$$

- Modelagem (tradição estatística) vs criação de medidas substanciais (tradição psicológica)

Debate entre entre Modelo de Rasch vsTRI de três parâmetros

Rasch

- Construir testes a partir de um modelo medida
- Parâmetro a pode indicar DIF requerendo um modelo mais complexo
- Por não possuir o parâmetro c não se ajustaria a testes de múltipla escolha
- Intervalar
- Consequência: justifica uso de estatísticas paramétricas (todo o resto do mundo estaria errado!)
- "Perde" mais itens
- Qual o impacto de variações de a e c afetam os parâmetros do modelo de Rasch ?

3-parâmetros

- Descrever os dados
- O modelo de Rasch sempre seria pior do que o modelo de 3-parâmetros pois não se ajusta tão bem aos dados
- Mais adequado para testes de múltipla escolha
- Não satisfaz as condições de medida intervalar
- Qual o sentido de uma unidade? (métrica arbitrária)
- "Salva" mais itens
- Até que ponto itens com baixo a e alto c deveriam ser usados?

Birnbaum Model: 3-PL For 2-PL, set $\mathrm{c}_{\mathrm{i}}=0$ For 1-PL, set $\mathrm{a}_{\mathrm{i}}=1.7, \mathrm{c}_{\mathrm{i}}=0$	Rasch Model
Allan Birnbaum 1957\$/1968	Georg Rasch 1952\$ / 1960
imitates data	defines measures
contrived to fit observed MCQ ICC's	derived to construct scientific measurement
$\log \left[\frac{P_{\theta i}-c_{i}}{1-P_{\theta i}}\right]=a_{i}\left(\theta-b_{i}\right)$	$\log \left[\frac{P_{n i}}{1-P_{n i}}\right]=\left(B_{n}-D_{i}\right)$
$\begin{aligned} & \sum_{i} a_{i} X_{\theta i}=\sum_{i} a_{i} P_{\theta i} \rightarrow \theta \\ & \sum_{\theta} \theta X_{\theta i}=\sum_{\theta} \theta P_{\theta i} \rightarrow a_{i} \end{aligned}$ Shared $X_{\theta i}$ causes $\theta<->a_{i}$ feedback: divergence	$\begin{aligned} & \sum_{i} X_{n i}=\sum_{i} P_{n i} \rightarrow B_{n} \\ & \sum_{n} X_{n i}=\sum_{n} P_{n i} \rightarrow D_{i} \end{aligned}$ inevitable convergence
MCQ dichotomies only [1992: Eiji Muraki's Generalized Partial Credit Model]	any ordered observation dichotomy, rating, ranking, counting
guessing accepted reliable item asset	guessing rejected unreliable person liability
discrimination variation welcomed as a useful item scoring weight	discrimination variation rejected as a misleading item bias interaction
crossed ICC's accepted natural and unavoidable	crossed ICC's rejected prevents construct validity
Figure 1. Comparison of Rasch and Birnbaum Models. (\$ first written report)	

- Wilson, M. (2003). On Choosing a Model for Measuring. Methods of Psychological Research Online, 8(3), 1-22.
θ

Three Perceptions of One! Voriable

Figure 3. Five Rasch Items and Three Ability Levels
1st = Low ability; 2nd = Medium ability;
3rd = High Ability
Notice the 3 identical item-difficulty hierarchies (advancing from left to right)

Figure 4. Five Rasch Curves and Three Ability Levels
1st = Low ability; 2nd = Medium ability; 3rd = High Ability

Figure 5. Five Birnbaum Curves and Three Ability Levels
1st = Low ability; 2nd = Medium ability; 3rd = High Ability

Three Different Varlables
Five Birnbaum litem:

What is the Item Definition of this Yariable?
Figure 6. Five Birnbaum Items and Three Ability Levels
1st = Low ability; 2nd = Medium ability;
3rd $=$ High Ability
Notice the 3 different item-difficulty hierarchies (advancing from left to right)

Figure 2. A useful, linear, invariant measuring instrument.

Impacto do cnas calibrações do modelo de Rasch

Uso do modelo de Rasch em testes de múltipla escolha

- Andrich, D., Marais, I., \& Humphry, S. (2012). Using a theorem by Andersen and the dichotomous Rasch model to assess the presence of random guessing in multiple choice items. Journal of Educational and Behavioral Statistics, 37(3), 417-442.

FIGURE 3. ICCs of 3 items from the first analysis of the simulated example which contains guessed responses showing the bias of $\hat{\delta}_{\mathrm{i}}<\delta_{\mathrm{i}}$.

Parâmetro ccomo moderador !

$$
\operatorname{Pr}\left\{X_{n i}=1\right\}=c_{i}+\left(1-c_{i}\right) P=c_{i}+P-c_{i} P=P+c_{i}(1-P) .
$$

Probabilidade de acerto
segundo modelo de Rasch
(sem acerto ao acaso)
é .. moderada pelo c multiplicado pela distância entre a habilidade da pessoa $v s$ dificuldade do item $\mathrm{Q}=1-\mathrm{P}$

Andrich et al.

FIGURE 2. Item characteristic curves for the Rasch model, the 3PL and the generalized guessing model with $\mathrm{y}=15$.

Caminho do meio ...

(porque não o melhor dos dois mundos?)

Questões basais

- Quanto, de fato, os resultados dos sujeitos e dos itens diferem ao utilizarmos um ou outro modelo?

Prova Docente

- "A Prova Nacional de Concurso para Ingresso na Carreira Docente tem o objetivo principal de subsidiar os Estados, o Distrito Federal e os Municípios na realização de concursos públicos para a contratação de docentes para a educação básica. Trata-se de uma prova anual, a ser aplicada de forma descentralizada em todo o país para os candidatos ao ingresso na carreira docente das redes de educação básica."

Matriz de Referência

Processos (competências):

P1. A articulação de conhecimentos para compreensão de aspectos culturais, ambientais, políticos, econômicos, científicos e tecnológicos da sociedade contemporânea.

P2. A promoção de ações de inclusão, de valorização da diversidade e singularidade dos alunos e de respeito aos direitos educativos no contexto da comunidade escolar.

P3. O planejamento do trabalho pedagógico para orientar os processos de construção de conhecimento.
P4. O desenvolvimento de metodologias e recursos pertinentes para alcançar os objetivos do trabalho pedagógico.
P5. A organização de procedimentos avaliativos que permitam reorientar a prática educacional.
P6. A comunicação com coerência e coesão por meio de textos escritos.

Objetos de conhecimento:

- Políticas Educacionais (POL)
- Organização e Gestão do Trabalho Pedagógico (OGTP)
- Desenvolvimento e Aprendizagem (DES)
- Língua Portuguesa e seu Ensino (LP)
- Matemática e seu Ensino (MAT)
- História e seu Ensino (HIS)
- Geografia e seu Ensino (GEO)
- Ciências da Natureza e seu Ensino (CIEN)
- Arte e seu Ensino (ART)
- Educação Física e seu Ensino (EF)

Mapa de itens do pré-teste

Objetos (áreas) de conhecimento	P1	P2	P3	P4	P5	Total
		36				36
Organização e Gestão do Trabalho Pedagógico (OGTP)						
Desenvolvimento e Aprendizagem (DES)			12	12	12	36
Língua Portuguesa (LP)	6		8	8	8	30
Matemática (MAT)	6		8	8	8	30
História (HIS)	6		8	8	8	30
Geografia (GEO)	6		8	8	8	30
Ciências da Natureza (CN)	6		8	8	8	30
Arte (ART)	6		8	8	8	30
Educação Física (EF)			8	8	8	24
Total	36	36	80	80	80	312

Dados do pré-teste da Prova Docente

- Uso de Blocos Balanceados Incompletos (BIB) e distribuição de cadernos em espiral.
- Equalização e link por: desenho de grupo equivalente e itens comuns
- 312 itens divididos em dois subconjuntos de 156 itens (B1 e B2)
- Formaram-se: 26 blocos de 12 itens -> 52 cadernos de 36 itens
- Itens comuns entre cadernos (12)
- Amostras randomicamente equivalentes aos cadernos
- Amostras representativas para estimação de correlações entre qualquer par de item (para se calcular a correlação entre eles).
- $\mathrm{N}=10.588$ pessoas (professores e estudantes): 5.759 B 1 e 4.829 B 2
- AFE e AFC testando-se a unidimensionalidade

Objetivos e Método

- Comparar as estimativas dos paràmetros pelo modelo de Rasch e 3 -parâmetros.
- Calibração dos parâmetros:
- 3 -parâmetros: XCALIBRE 4.1 (Guyer, \& Thompson, 2012) que implementa o método de estimação de máxima verossimilhança marginal (MML) e EAP para os Thetas
- 1-parâmetro (modelo de Rasch): WINSTEPS (Linacre, 2009) que implementa o método de máxima verosimilhança conjunta (JMLE)
- Zero na escala de habilidade para identificar a métrica
- Análise correlacional entre os parâmetros
- Calibrados itens com cargas aceitáveis no fator geral
- Estimativas dos sujeitos não otimizadas !!

Índices de ajuste no modelo de Rasch

$$
\text { Outfit }_{i} ? \frac{\left.\right|_{n ? 1} ^{N} \frac{r_{n i}{ }^{2}}{V_{n i}}}{N} \quad \text { Infit }_{i} ? \frac{\left.\right|_{n ? 1} ^{N} r_{n i}{ }^{2}}{\left.\right|_{n / 1} ^{N} V_{n i}}
$$

	Exemplos de padrões de resposta à 12 itens em 3 níveis de dificuldade			Indices de Ajuste	
Padrões	Fácil	Médio	Difícil	INFIT	OUTFIT
1. Padrão ajustado	1110	1011	1000	<1,3	<1,3
2. Descuido/Desatenção	0111	1111	0000	<1,3	>>1,3
3. "Chute" com sorte	1110	1110	0001	<1,3	>>1,3
4. Conhecimento específico	1111	0001	1100	>>1,3	<1,3
5. Padrão assistematico	0000	0111	1111	>>1,3	>>1,3

Item information

Seq.	ID	Model	Key	Scored	Num Options	Domain	Flags
158	V158	3PL	B	Yes	4	1	

Classical statistics

N	P	S-Rpbis	T-Rpbis	Alpha w/o
1100	0.724	0.336	0.506	0.738

IRT parameters

a	b	c	a SE	b SE	c SE	Chi-sq	$d f$	p	z Resid	p
1.060	-0.844	0.172	0.036	0.037	0.019	37.561	15	0.001	0.413	0.679

Option statistics

Option	N	Prop.	S-Rpbis	T-Rpbis	Mean	SD	
A	40	0.036	-0.112	-0.163	-0.774	0.944	
B	796	0.724	0.336	0.506	0.273	0.761	**KEY**
C	133	0.121	-0.141	-0.242	-0.604	0.722	
D	125	0.114	-0.233	-0.339	-0.874	0.885	
Omit	6	0.005	-0.126	-0.130	-1.608	1.176	
Not Admin	9488				0.003	0.557	

Resultados

	M	DP	N	1	2	3	4	5
BIB 1								
1.b $3 p$	-0,405	1,490	111	1				
2.b1p	-0,821	1.134	111	0,973**	1			
3.a	0,824	0,247	111	0,007	-0,061	1		
4.c	0,192	0,011	111	-0,403**	-0,417**	-0,574**	1	
5. Infit	0,996	0,054	111	0,340**	0,364**	-0,848**	0,332**	1
6. Outfit	0,979	0,117	111	0,496**	0,586**	-0,747**	0,145	0,867**
BIB 2								
1.b $3 p$	-0,487	1,579	118	1				
2.blp	-0,834	1,137	118	0,978**	1			
3.a	0,812	0,246	118	0,050	-0,048	1		
4.c	0,177	0,009	118	-0,544**	-0,554**	-0,549**	1	
5. Infit	0,996	0,057	118	0,367**	0,442**	-0,814**	0,207*	1
6. Outfit	0,983	0,129	118	0,459**	0,576**	-0,658**	-0,034	0,876**

Escores Theta	M	DP	N	m1Fgth	m1F1th	m1F2th
BIB 1						
m3FgTh	0,013	0,879	5463	$\mathbf{0 , 9 7 4 ^ { * * }}$	$0,832^{* *}$	$0,781^{* *}$
m3F1Th	$-0,004$	0,802	5463	$0,849^{* *}$	$\mathbf{0 , 9 4 7}^{* *}$	$0,575^{* *}$
m3F2Th	0,021	0,737	5463	$0,826^{* *}$	$0,588^{* *}$	$\mathbf{0 , 9 3 6} \mathbf{n}^{* *}$
m1Fgth	0,005	0,884	5463			
m1F1th	0,109	1,085	5463			
m1F2th	0,003	1,112	5463			
BIB 2						
m3FgTh	0,013	0,883	4769	$\mathbf{0 , 9 7 5 *}$	$0,704^{* *}$	$0,917^{* *}$
m3F1Th	$-0,027$	0,688	4769	$0,716^{* *}$	$\mathbf{0 , 9 4 1 * *}$	$0,590^{* *}$
m3F2Th	0,011	0,860	4769	$0,927^{* *}$	$0,575^{* *}$	$\mathbf{0 , 9 6 7 * *}$
m1Fgth	0,004	0,870	4769			
m1F1th	0,356	1.235	4769			
m1F2th	0,011	0,947	4769			

Precisão Local (Curva de informação na escala precisão 0-1)

- Lembrança: prova com 36 itens - não é o formato final da Prova Docente!

Conclusões

- Correlação entre as pontuações theta, segundo os dois modelos, que estão altamente correlacionadas de 0,94 a 0,97
- Independente do modelo tem-se pontuações bastante similares para os sujeitos.
- As variações que se observam nas Figuras 3,4 e 5 dos thetas calculados segundo o modelo de três parâmetros para um mesmo theta (e consequentemente o mesmo escore total) no modelo de Rasch terá a ver com os parâmetros de discriminação dos itens em causa já que no modelo de Rasch "o escore total é uma estatística suficiente. Assim, uma mesma estimativa de escore theta é recebida independentemente de qual itens o sujeito acertou ou errou. Para o modelo de dois parâmetros, o qual contém itens com diferentes discriminações, a estimativa do nível de escore theta depende de exatamente quais itens se acertou e errou. Acertando-se itens relativamente mais discriminativos leva a estimativas de theta mais altas" (Embretson \& Reise, 2006, p.60).
- A variação da estimativa no modelo de três parâmetros está relacionada ao índice infit dos sujeitos. Quanto mais ajustado o padrão de resposta do sujeito mais ele será atraído para a média.
- A precisão pelo modelo de Rasch é superestimada já que não modela o "c"
- Linacre (2013): "In general, the information in a response that fits the dichotomous Rasch model contains more statistical information than an equivalent response that fits the 3-PL model. This is because of the information that is lost due to the lower asymptote, c parameter. For example, suppose that the c parameter is 0.99 , then there is almost no information in the response. If the item-sample targeting is at 70% success and $\mathrm{c}=.2$, we expect a 3 -PL response to contain around 67% of the information in a Rasch response"
- Solução: estimar b e theta no Rasch adaptativamente (usando o comando CUTLOW no Winsteps) eliminando itens muito difíceis para estimar as habilidades de pessoas com baixa habilidade (Andrich e cols. 2012).

Item Characteristic Curves

Coefficients:			
	Gussng	Dffclt	Dscrmn
i01	0.227	-0.526	1.841
i03	0.101	-1.013	1.843

Item Information Curves

http://www.econometricsbysimulation.com/2012/09/playing-around-with-irt-graphs.html

Referèncias

- Borsboom, D., \& Mellenbergh, G. J. (2007). Test validity in cognitive assessment. Em J. Leighton, \& M. Gierl, (Eds.). Cognitive diagnostic assessment for education: Theory and applications (pp. 85-115). Cambridge University Press.
- Georgiadou, E., Triantafillou, E., \& Economides, A. (2007). A review of item exposure control strategies for computerized adaptive testing developed from 1983 to 2005. Journal of Technology, Learning, and Assessment, 5(8). Retrieved [date] from http://www.jtla.org.
- Kamata, A., \& Bauer, D. J. (2008). A note on the relation between factor analytic and item response theory models. Structural Equation Modeling, 15(1), 136-153.
- Hambleton, H. K., \& Swaminatham, H. (1985). Item response theory: principles and applications. Boston: Kluwer.

