Comparação dos modelos de Rasch e de três parâmetros nas calibrações dos parâmetros dos itens do pré-teste da Prova Nacional para o Ingresso na Carreira Docente

Ricardo Primi (Laboratório de Avaliação Psicológica e Educacional – LabAPE, Universidade São Francisco, Itatiba)

* * * *

& Alexandre José de Souza Peres (Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira – INEP) Batalha ...

 $P_{i}(\theta) = \frac{e^{D(\theta - b_{i})}}{1 + e^{D(\theta - b_{i})}} \quad vs \quad P_{i}(\theta) = c_{i} + (1 - c_{i}) \quad \frac{e^{Da_{i}(\theta - b_{i})}}{1 + e^{Da_{i}(\theta - b_{i})}}$

• Modelagem (tradição estatística) vs criação de medidas substanciais (tradição psicológica)

Debate entre entre Modelo de Rasch vs TRI de três parâmetros

Rasch

- Construir testes a partir de um modelo medida
 - Parâmetro *a* pode indicar DIF requerendo um modelo mais complexo
 - Por não possuir o parâmetro c não se ajustaria a testes de múltipla escolha
- Intervalar
 - Consequência: justifica uso de estatísticas paramétricas (todo o resto do mundo estaria errado!)
- "Perde" mais itens
 - Qual o impacto de variações de *a* e *c* afetam os parâmetros do modelo de Rasch ?

3-parâmetros

- Descrever os dados
 - O modelo de Rasch sempre seria pior do que o modelo de 3-parâmetros pois não se ajusta tão bem aos dados
 - Mais adequado para testes de múltipla escolha
- Não satisfaz as condições de medida intervalar
 - Qual o sentido de uma unidade ? (métrica arbitrária)
- "Salva" mais itens
 - Até que ponto itens com baixo *a* e alto *c* deveriam ser usados?

• www.rasch.org/rmt/rmt61a.htm

Rasch Model
Georg Rasch 1952\$ / 1960
defines measures
derived to construct scientific measurement
$\log \left \frac{P_{ni}}{1 - P_{ni}} \right = (B_n - D_i)$
$\sum_{i} X_{ni} = \sum_{i} P_{ni} \rightarrow B_{n}$
$\sum_{i=1}^{n} X_{ni} = \sum_{i=1}^{n} P_{ni} \rightarrow D_{i}$
inevitable convergence
any ordered observation dichotomy, rating, ranking, counting
guessing rejected unreliable person liability
discrimination variation rejected as a misleading item bias interaction
crossed ICC's rejected prevents construct validity

• Wilson, M. (2003). On Choosing a Model for Measuring. *Methods of Psychological Research* Online, 8(3), 1-22.

WORD RECOGNITION RULER

DIFFICULTY			SAMPLE			
stery ale			TASK			
MEASURE	1.1 1.3 1.4 1.5 1.7 1.8 2.0 2.2 2.8 3.3 4.1 5.7 9.3 12.9	NORM	is <i>red</i> down black <i>away</i> cold <i>drink</i> shallow through <i>octopus</i> allowable hinderance <i>equestrian</i> heterogeneous	A B C D	CRITERIA	
240 12.9 heterogeneous						
	tery ale <i>AREASURE</i>	tery ale Grade 50% M 300 A 1.1 1.3 1.4 1.5 1.7 1.8 2.0 2.2 2.8 3.3 4.1 5.7 9.3 12.9 FIXE	Atery ale Grade Scale 50% Mastery 1.1 1.3 1.4 1.5 1.7 1.8 2.0 2.2 2.8 3.3 4.1 5.7 9.3 12.9 MU 2.2 2.8 3.3 4.1 5.7 9.3 12.9 WYON NU 2.2 2.8 3.3 4.1 5.7 9.3 12.9 NU 2.2 2.8 3.3 4.1 5.7 9.3 12.9 FIXED ITEM DEFINE V	tery aleGrade Scale 50% MasterySAMPL TASKH50% Masteryis red down black 1.5 1.7 1.8 2.0 2.2 2.8 3.3 4.1 5.7 9.3 12.9is red down black away cold drink shallow through octopus allowable hinderance equestrian heterogeneousFIXED ITEM POSITIONS DEFINE VARIABLE	tery aleGrade Scale 50% MasterySAMPLE TASK1.11.1is red down black 1.5A down black away 2.0A down black away 2.2B cold drink through octopus allowable hinderance equestrian heterogeneousB c5.7NAO 9.3B cold drink through octopus allowable hinderance equestrian heterogeneousC	

Impacto do *c* nas calibrações do modelo de Rasch

Uso do modelo de Rasch em testes de múltipla escolha

• Andrich, D., Marais, I., & Humphry, S. (2012). Using a theorem by Andersen and the dichotomous Rasch model to assess the presence of random guessing in multiple choice items. *Journal of Educational and Behavioral Statistics*, *37*(3), 417-442.

Assessing Random Guessing

FIGURE 3. ICCs of 3 items from the first analysis of the simulated example which contains guessed responses showing the bias of $\hat{\delta}_i < \delta_i$.

Parâmetro ccomo moderador !

 $\Pr\{X_{ni} = 1\} = c_i + (1 - c_i)P = c_i + P - c_iP = P + c_i(1 - P).$

$\Pr\{X_{ni} = 1\} = P + c_i(1-P)^{\nu},$

y redutor do efeito do *c* Em pessoas com alta habilidade relativa ao item

Probabilidade de acerto segundo modelo de Rasch (sem acerto ao acaso)

é .. moderada pelo *c* multiplicado pela distância entre a habilidade da pessoa *vs* dificuldade do item Q = 1-P

FIGURE 2. Item characteristic curves for the Rasch model, the 3PL and the generalized guessing model with y = 15.

Caminho do meio ... (porque não o melhor dos dois mundos?)

* * * *

Questões basais

• Quanto, de fato, os resultados dos sujeitos e dos itens diferem ao utilizarmos um ou outro modelo ?

Prova Docente

• "A Prova Nacional de Concurso para Ingresso na Carreira Docente tem o objetivo principal de subsidiar os Estados, o Distrito Federal e os Municípios na realização de concursos públicos para a contratação de docentes para a educação básica. Trata-se de uma prova anual, a ser aplicada de forma descentralizada em todo o país para os candidatos ao ingresso na carreira docente das redes de educação básica."

Matriz de Referência

Processos (competências):

P1. A articulação de conhecimentos para compreensão de aspectos culturais, ambientais, políticos, econômicos, científicos e tecnológicos da sociedade contemporânea.

P2. A promoção de ações de inclusão, de valorização da diversidade e singularidade dos alunos e de respeito aos direitos educativos no contexto da comunidade escolar.

- P3. O planejamento do trabalho pedagógico para orientar os processos de construção de conhecimento.
- P4. O desenvolvimento de metodologias e recursos pertinentes para alcançar os objetivos do trabalho pedagógico.
- P5. A organização de procedimentos avaliativos que permitam reorientar a prática educacional.
- P6. A comunicação com coerência e coesão por meio de textos escritos.

Objetos de conhecimento:

- Políticas Educacionais (POL)
- Organização e Gestão do Trabalho Pedagógico (OGTP)
- Desenvolvimento e Aprendizagem (DES)
- Língua Portuguesa e seu Ensino (LP)
- Matemática e seu Ensino (MAT)
- História e seu Ensino (HIS)
- Geografia e seu Ensino (GEO)
- Ciências da Natureza e seu Ensino (CIEN)
- Arte e seu Ensino (ART)
- Educação Física e seu Ensino (EF)

Mapa de itens do pré-teste

Objetos (áreas) de conhecimento	Processos (competências)						
Coljetos (arcas) de connectmento	P1	P2	P3	P4	P5	Total	
Políticas Educacionais (POL)		36				36	
Organização e Gestão do Trabalho Pedagógico (OGTP)			12	12	12	36	
Desenvolvimento e Aprendizagem (DES)			12	12	12	36	
Língua Portuguesa (LP)	6		8	8	8	30	
Matemática (MAT)	6		8	8	8	30	
História (HIS)	6		8	8	8	30	
Geografia (GEO)	6		8	8	8	30	
Ciências da Natureza (CN)	6		8	8	8	30	
Arte (ART)	6		8	8	8	30	
Educação Física (EF)			8	8	8	24	
Total	36	36	80	80	80	312	

Dados do pré-teste da Prova Docente

- Uso de Blocos Balanceados Incompletos (BIB) e distribuição de cadernos em espiral.
 - Equalização e link por: desenho de grupo equivalente e itens comuns
- 312 itens divididos em dois subconjuntos de 156 itens (B1 e B2)
- Formaram-se: 26 blocos de 12 itens -> 52 cadernos de 36 itens
 - Itens comuns entre cadernos (12)
 - Amostras randomicamente equivalentes aos cadernos
 - Amostras representativas para estimação de correlações entre qualquer par de item (para se calcular a correlação entre eles).
- N = 10.588 pessoas (professores e estudantes): 5.759 B1 e 4.829 B2
- AFE e AFC testando-se a unidimensionalidade

Objetivos e Método

- Comparar as estimativas dos parâmetros pelo modelo de Rasch e 3-parâmetros.
- Calibração dos parâmetros:
 - 3-parâmetros: XCALIBRE 4.1 (Guyer, & Thompson, 2012) que implementa o método de estimação de máxima verossimilhança marginal (MML) e EAP para os Thetas
 - 1-parâmetro (modelo de Rasch): WINSTEPS (Linacre, 2009) que implementa o método de máxima verosimilhança conjunta (JMLE)
 - Zero na escala de habilidade para identificar a métrica
- Análise correlacional entre os parâmetros
- Calibrados itens com cargas aceitáveis no fator geral
- Estimativas dos sujeitos não otimizadas !!

Índices de ajuste no modelo de Rasch

 $Outfit_{i} ? \frac{\prod_{n=1}^{N} \frac{r_{ni}^{2}}{V_{ni}}}{N}$

 $Infit_{i} ? \frac{\Big|_{n?1}^{N} r_{ni}^{2}}{\Big|_{N}^{N} V_{ni}}$ n/1

Exemplos	de	padrões	de	Indices de Ajuste
resposta à	12 iter	ns em 3 ní	veis	

de dificuldade

Padrões	Fácil	Médio	Difícil	INFIT	OUTFIT
1. Padrão ajustado	1110	1011	1000	<1,3	<1,3
2. Descuido/Desatenção	0111	1111	0000	<1,3	>>1,3
3. "Chute" com sorte	1110	1110	0001	<1,3	>>1,3
4. Conhecimento específico	1111	0001	11 00	>>1,3	<1,3
5. Padrão assistematico	0000	0111	1111	>>1,3	>>1,3

Item information

Seq.	ID	Model	Key	Scored	Num Options	Domain	Flags
158	V158	3PL	В	Yes	4	1	

Classical statistics

N	Ρ	S-Rpbis	T-Rpbis	Alpha w/o
1100	0.724	0.336	0.506	0.738

IRT parameters

а	b	с	a SE	b SE	c SE	Chi-sq	df	p	z Resid	р
1.060	-0.844	0.172	0.036	0.037	0.019	37.561	15	0.001	0.413	0.679

Option statistics

	Option	N	Prop.	S-Rpbis	T-Rpbis	Mean	SD	
	A	40	0.036	-0.112	-0.163	-0.774	0.944	
	В	796	0.724	0.336	0.506	0.273	0.761	**KEY**
	С	133	0.121	-0.141	-0.242	-0.604	0.722	
	D	125	0.114	-0.233	-0.339	-0.874	0.885	
	Omit	6	0.005	-0.126	-0.130	-1.608	1.176	
·	Not Admin	9488				0.003	0.557	

Resultados

 $\langle \bullet \rangle$

	Μ	DP	Ν	1	2	3	4	5
BIB 1	<u> </u>				-	<u> </u>		
1.b 3p	-0,405	1,490	111	1				
2. b 1p	-0,821	1.134	111	0,973**	1			
3. a	0,824	0,247	111	0,007	-0,061	1		
4. c	0,192	0,011	111	-0,403**	-0,417**	-0,574**	1	
5. Infit	0,996	0,054	111	0,340**	0,364**	-0,848**	0,332**	1
6. Outfit	0,979	0,117	111	0,496**	0,586**	-0,747**	0,145	0,867**
BIB 2								
1.b 3p	-0,487	1,579	118	1				
2. <i>b</i> 1 <i>p</i>	-0,834	1,137	118	0,978**	1			
3. a	0,812	0,246	118	0,050	-0,048	1		
4. c	0,177	0,009	118	-0,544**	-0,554**	-0,549**	1	
5. Infit	0,996	0,057	118	0,367**	0,442**	-0,814**	$0,\!207^{*}$	1
6. Outfit	0,983	0,129	118	0,459**	0,576**	-0,658**	-0,034	0,876**

Escores Theta	М	DP	N	m1Fgth	m1F1th	m1F2th
BIB 1						
m3FgTh	0,013	0,879	5463	0,974**	0,832**	0,781**
m3F1Th	-0,004	0,802	5463	0,849**	0,947**	0,575**
m3F2Th	0,021	0,737	5463	0,826**	0,588**	0,936**
m1Fgth	0,005	0,884	5463			
m1F1th	0,109	1,085	5463			
m1F2th	0,003	1,112	5463			
BIB 2						
m3FgTh	0,013	0,883	4769	0,975**	$0,704^{**}$	0,917**
m3F1Th	-0,027	0,688	4769	0,716**	0,941**	0,590**
m3F2Th	0,011	0,860	4769	$0,927^{**}$	0,575**	0,967**
m1Fgth	0,004	0,870	4769			
m1F1th	0,356	1.235	4769			
m1F2th	0,011	0,947	4769			

Precisão Local (Curva de informação na escala precisão 0-1)

• Lembrança: prova com 36 itens – não é o formato final da Prova Docente!

Conclusões

• Correlação entre as pontuações theta, segundo os dois modelos, que estão altamente correlacionadas de 0,94 a 0,97

• Independente do modelo tem-se pontuações bastante similares para os sujeitos.

- As variações que se observam nas Figuras 3, 4 e 5 dos thetas calculados segundo o modelo de três parâmetros para um mesmo theta (e consequentemente o mesmo escore total) no modelo de Rasch terá a ver com os parâmetros de discriminação dos itens em causa já que no modelo de Rasch "o escore total é uma estatística suficiente. Assim, uma mesma estimativa de escore theta é recebida independentemente de qual itens o sujeito acertou ou errou. Para o modelo de dois parâmetros, o qual contém itens com diferentes discriminações, a estimativa do nível de escore theta depende de exatamente quais itens se acertou e errou. Acertando-se itens relativamente mais discriminativos leva a estimativas de theta mais altas" (Embretson & Reise, 2006, p.60).
- A variação da estimativa no modelo de três parâmetros está relacionada ao índice infit dos sujeitos. Quanto mais ajustado o padrão de resposta do sujeito mais ele será atraído para a média.
- A precisão pelo modelo de Rasch é superestimada já que não modela o "c"
 - Linacre (2013): "In general, the information in a response that fits the dichotomous Rasch model contains more statistical information than an equivalent response that fits the 3-PL model. This is because of the information that is lost due to the lower asymptote, c parameter. For example, suppose that the c parameter is 0.99, then there is almost no information in the response. If the item-sample targeting is at 70% success and c=.2, we expect a 3-PL response to contain around 67% of the information in a Rasch response."
- Solução: estimar b e theta no Rasch adaptativamente (usando o comando CUTLOW no Winsteps) eliminando itens muito difíceis para estimar as habilidades de pessoas com baixa habilidade (Andrich e cols. 2012).

Coef	ficients	:	
	Gussng	Dffclt	Dscrmn
i01	0.227	-0.526	1.841
i03	0.101	-1.013	1.843

http://www.econometricsbysimulation.com/2012/09/playing-around-with-irt-graphs.html

Referências

- Borsboom, D., & Mellenbergh, G. J. (2007). Test validity in cognitive assessment. Em J. Leighton, & M. Gierl, (Eds.). *Cognitive diagnostic assessment for education: Theory and applications* (pp. 85-115). Cambridge University Press.
- Georgiadou, E., Triantafillou, E., & Economides, A. (2007). A review of item exposure control strategies for computerized adaptive testing developed from 1983 to 2005. *Journal of Technology, Learning, and Assessment*, 5(8). Retrieved [date] from http://www.jtla.org.
- Kamata, A., & Bauer, D. J. (2008). A note on the relation between factor analytic and item response theory models. *Structural Equation Modeling*, 15(1), 136-153.
- Hambleton, H. K., & Swaminatham, H. (1985). *Item response theory: principles and applications*. Boston: Kluwer.