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Batalha ...

Pi (θ ) =
eD(θ−bi )

1+ eD(θ−bi )
vs Pi (θ ) = ci + (1− ci )

eDai (θ−bi )

1+ eDai (θ−bi )

• Modelagem (tradição estatística) vs criação de medidas substanciais (tradição psicológica)



Debate entre entre Modelo de Rasch vs TRI 
de três parâmetros

Rasch

• Construir testes a partir de um modelo medida
• Parâmetro a pode indicar DIF requerendo um 

modelo mais complexo
• Por não possuir o parâmetro c não se ajustaria 

a testes de múltipla escolha
• Intervalar

• Consequência: justifica uso de estatísticas 
paramétricas (todo o resto do mundo estaria 
errado!)

• “Perde” mais itens
• Qual o impacto de variações de a e c afetam os 

parâmetros do modelo de Rasch ? 

3-parâmetros

• Descrever os dados
• O modelo de Rasch sempre seria pior do que 

o modelo de 3-parâmetros pois não se ajusta 
tão bem aos dados

• Mais adequado para testes de múltipla escolha
• Não satisfaz as condições de medida intervalar

• Qual o sentido de uma unidade ? (métrica 
arbitrária)

• “Salva” mais itens
• Até que ponto itens com baixo a e alto c

deveriam ser usados? 



• www.rasch.org/rmt/rmt61a.htm 

IRT in the 1990s: Which Models Work Best? 3PL or
Rasch?

Ben Wright's opening remarks in his invited debate with Ron Hambleton, Session 11.05, AERA Annual Meeting
1992.

See also 3PL or Rasch?

Good morning! I was introduced as one of the debaters. I wonder if I might not turn out to be a debunker rather than
a debater. We will find out as time goes on. As for the mysterious "one parameter" model mentioned by Moderator,
Gwyneth Boodoo, I don't know what that is, so I can't speak for it. To my knowledge, there are no "one parameter"
models in psychometrics. There are, in fact, only two deliberate models widely used. One is the two-parameter
Rasch Model. The two parameters (B, D) are explicit in Figure 1. The other is the four parameter (a, b, c, θ)
Birnbaum model which sometimes has five when an upper asymptote is estimated (Barton & Lord, 1981).

I will defend the Rasch Model. Actually, even at two parameters (B, D) the comparison is misleading because the
Rasch Model can have any number of parameters to the right of the log-odds statement, as long as they are
connected with plus or minus signs. As long as you maintain the additivity of measurement construction, you can
have twenty parameters off to the right, even for a dichotomous observation. That might be a somewhat complex
data design, but we work with these things all the time these days, and fruitfully.

Birnbaum Model: 3-PL
For 2-PL, set ci=0

For 1-PL, set ai=1.7, ci=0
Rasch Model

Allan Birnbaum 1957$ / 1968 Georg Rasch 1952$ / 1960

imitates data defines measures

contrived to fit observed MCQ ICC's derived to construct scientific measurement

Shared Xθi causes θ <–> ai feedback: divergence inevitable convergence

MCQ dichotomies only
[1992: Eiji Muraki's Generalized Partial Credit Model]

any ordered observation
dichotomy, rating, ranking, counting

guessing accepted
reliable item asset

guessing rejected
unreliable person liability

discrimination variation welcomed
as a useful item scoring weight

discrimination variation rejected
as a misleading item bias interaction

crossed ICC's accepted
natural and unavoidable

crossed ICC's rejected
prevents construct validity

Figure 1. Comparison of Rasch and Birnbaum Models.
($ first written report)



• Wilson, M. (2003). On Choosing a Model for Measuring.  Methods of Psychological Research Online, 8(3), 
1-22. 
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Figure 4. Item characteristic curves—all ICCs have the same shape. 

Let us make this choice concrete by moving into the context of parametric item re-

sponse modeling. Introducing the various item response models is beyond the scope of 

this article, but introductions have been provided elsewhere (e.g., van der Linden & 

Hambleton, 1996). In the context of item response models, the conceptual basis of the 

argument as described above is translated into a different format—it becomes a discus-

sion about parameters within the item response models. Suppose now that the ICCs we 

are discussing are given by a two-parameter logistic function as in equation (2) 

 P(Xi  1 |T,Gi,Di )  
eD i (T�G i )

1� eD i (T�G i )
 (2) 

where the T and Gi are as above, and the Di is a slope parameter. In this context, having 

the same shape for all the ICCs implies that the Di are all equal, that is, that we are 

requiring a Rasch model: 

 P(Xi  1 |T,Gi )  
eT�G i

1� eT�G i
 (3) 
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Figure 5. Item characteristic curves—ICCs have different shapes. 

Discussion 

If an item set really did have characteristics like those in Figure 5, what could one do 

to overcome the problem of this lack of invariance? Some possible strategies that one 

could consider are given below. 

(a) One could develop a more complex construct interpretation where the underlying 

theory is consistent with (in fact predicts that) the order of the items should change for 

people at different points of the construct. If one could not find a set of items that had 

the construct map property, then this would be the clear next choice. But, if one could 

find an acceptable set of items with the construct map property, then it would seem to 

be odd to not use them, and thus preserve the ease of interpretation. This is a rather 

uncommon approach, mainly because it involves making interpretations that are quite 

complex, more complex than are usually entertained in psychometric contexts. One ex-

ample is Yen’s interpretation of differences in slopes as evidence of “increasing cognitive 

complexity” (Yen, 1985). Another is Wilson’s extension of Rasch modeling to incorpo-



DIFFICULTY
SAMPLE

TASKMastery
Scale

Grade Scale
50% Mastery

25
41
58
70
86

101
114
124
143
159
174
192
211
240

1.1
1.3
1.4
1.5
1.7
1.8
2.0
2.2
2.8
3.3
4.1
5.7
9.3

12.9

is
red

down
black
away
cold
drink

shallow
through
octopus

allowable
hinderance
equestrian

heterogeneous
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B
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FIXED ITEM POSITIONS
DEFINE VARIABLE

Figure 2. A useful, linear, invariant measuring instrument.

Figure 3. Five Rasch Items and Three
Ability Levels

1st = Low ability; 2nd = Medium ability;
3rd = High Ability

Notice the 3 identical item-difficulty
hierarchies (advancing from left to right)

Figure 4. Five Rasch Curves and Three
Ability Levels

1st = Low ability; 2nd = Medium ability;
3rd = High Ability

extra dimensions.

What I want to talk about in the minute or
two I have left is crossed ICC's. I reject them
because they prevent construct validity.
Here in Figure 2 is a beautiful word-
recognition ruler constructed by another
man who makes measures for a living, Dick
Woodcock (1974). In the left column are the
inches on Dick's ruler. They mean the same
amount from one end to the other. In the
center column is the range of this ruler: from
1st to 12th Grade. In the right column are
the words that define this variable, that
specify its definition. "Red" is a nice short
easy word. It is recognized at the 1st Grade.
But, when you get down to "heterogeneous",
it takes a 12th Grader to nail it down. We
have a continuous construct here, specified
explicitly, which we can use to make sense
out of children's measures. This construct
gives the scale meaning. The identification
of a stable ordering and spacing of items is
decisive for construct validity.

Look at Figure 3. It
needs to be the case
that, whether you are a
1st, 2nd or 3rd Grader,
"red", "away", "drink",
"octopus" and
"equestrian" remain in
the same order of
experienced difficulty, at
the same spacing. The
ruler has to be the same
for every child
measured whatever
their grade. If the ruler
changes, it is not a
ruler. It's something
else.

Look at Figure 4. To
obtain the arrangement
in Figure 3 and to keep it stable, we need a special kind of response curve. Here is the item response ogive deduced
from the standard definition of measurement. These curves are parallel, in the sense that they don't cross. If you
make the vertical axis log-odds instead of probabilities, you will find that these curves become straight lines that are
exactly parallel. The important thing to see is that they don't cross each other.



Figure 5. Five Birnbaum Curves and
Three Ability Levels

1st = Low ability; 2nd = Medium ability;
3rd = High Ability

Figure 6. Five Birnbaum Items and Three
Ability Levels

1st = Low ability; 2nd = Medium ability;
3rd = High Ability

Notice the 3 different item-difficulty
hierarchies (advancing from left to right)

Now let's see what
happens when we look
at some Birnbaum
curves. Figure 5 shows
a handful of typical
Birnbaum curves. They
have different
asymptotes, different
slopes. It looks messy.
It doesn't look like any
measurement system
that I would want to
work with. Why?
Because the curves
cross.

In Figure 6 we see the
consequence for the
variable experienced by
those three children. Incredible! Look at the 1st Grader. "Red" is easier than "away" is easier than "drink" is easier
than "octopus". OK. But what happens to the 3rd Grader? For the 3rd Grader its "away" that is easier. "Red" is
harder even than "drink"! And "octopus" is now next to "red", instead of up near "equestrian". What is the definition of
this variable? What is the construct defined here? What kind of ruler is this? It changes for every level of ability. I
can't make a living with that kind of a ruler. No scientist, engineer, businessman or cook, who depends on measures
of the kind this carpenter's ruler exemplifies, can work with that kind of ruler.

Let's go backwards. Much as I might be intrigued by the apparent sophistication of the Birnbaum curves in Figure 5, I
cannot work with them. I must have orderly, cooperating curves like the Rasch curves in Figure 4, and I must find
data that will serve this purpose. I cannot swallow whatever junk happens to come my way. I must be choosy and
selective and careful when I construct my data. When I go to market I don't buy rotten fruit. I buy good fruit. When I
make a salad, I only pick the parts that make a good salad. I have a recipe for what I want. I have a model for
measurement.

I need to make the kind of a structure in Figure 3 - the same ruler for everybody, so I can have a useful and stable
construct definition like Dick's word-recognition ruler in Figure 2.

The Birnbaum model is data-centered: model must fit, else get a better model. It hardly ever objects to any item. The
Rasch model is theory-centered: data must fit, else get better data. And in the search for better data, wonderful
things are discovered about the nature of what you are measuring and the way that people can tell you about it.
These discoveries are important events which develop and strengthen your construct and your ability to measure it.
The Birnbaum model is patched up to chase after whatever pops up. The Rasch model is derived a priori, to define
the criteria which data must follow to qualify for making measures.

Benjamin D. Wright
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Figure 2. A useful, linear, invariant measuring instrument.

Figure 3. Five Rasch Items and Three
Ability Levels

1st = Low ability; 2nd = Medium ability;
3rd = High Ability

Notice the 3 identical item-difficulty
hierarchies (advancing from left to right)

Figure 4. Five Rasch Curves and Three
Ability Levels

1st = Low ability; 2nd = Medium ability;
3rd = High Ability

extra dimensions.

What I want to talk about in the minute or
two I have left is crossed ICC's. I reject them
because they prevent construct validity.
Here in Figure 2 is a beautiful word-
recognition ruler constructed by another
man who makes measures for a living, Dick
Woodcock (1974). In the left column are the
inches on Dick's ruler. They mean the same
amount from one end to the other. In the
center column is the range of this ruler: from
1st to 12th Grade. In the right column are
the words that define this variable, that
specify its definition. "Red" is a nice short
easy word. It is recognized at the 1st Grade.
But, when you get down to "heterogeneous",
it takes a 12th Grader to nail it down. We
have a continuous construct here, specified
explicitly, which we can use to make sense
out of children's measures. This construct
gives the scale meaning. The identification
of a stable ordering and spacing of items is
decisive for construct validity.

Look at Figure 3. It
needs to be the case
that, whether you are a
1st, 2nd or 3rd Grader,
"red", "away", "drink",
"octopus" and
"equestrian" remain in
the same order of
experienced difficulty, at
the same spacing. The
ruler has to be the same
for every child
measured whatever
their grade. If the ruler
changes, it is not a
ruler. It's something
else.

Look at Figure 4. To
obtain the arrangement
in Figure 3 and to keep it stable, we need a special kind of response curve. Here is the item response ogive deduced
from the standard definition of measurement. These curves are parallel, in the sense that they don't cross. If you
make the vertical axis log-odds instead of probabilities, you will find that these curves become straight lines that are
exactly parallel. The important thing to see is that they don't cross each other.



Impacto do c nas calibrações do modelo de 
Rasch

Uso do modelo de  Rasch em testes de múltipla escolha

• Andrich, D., Marais, I., & Humphry, S. (2012). Using a theorem by Andersen and the
dichotomous Rasch model to assess the presence of random guessing in multiple choice
items. Journal of Educational and Behavioral Statistics, 37(3), 417-442.



FIGURE 3. ICCs of 3 items from the first analysis of the simulated example which contains

guessed responses showing the bias of d̂i < di.
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random guess from among C alternatives by person whose probability of answer-
ing item correctly is 0 has the probability of ci ¼ 1=C being correct. Therefore,
ci ¼ 1=C is the lower asymptote of the ICC curve of Equation (6) for persons
with the extremely low relative proficiency. This is consistent with the idea that
the persons of least proficiency, relative to an item’s difficulty, are likely to guess
randomly. If ci ¼ 0; i ¼ 1; 2; . . . ; I , then Equation (6) reduces to the two-
parameter logistic (2PL) model. If, in addition ai ¼ 1; i ¼ 1; 2; . . . ; I , then,
algebraically, the model specializes to the Rasch model.

Although Equation (6) has the guessing parameter as a property of the item
only, in the response process itself, the probability of guessing is moderated
by the item’s difficulty relative to a person’s proficiency. This can be seen from
the following re-expression of Equation (6):

PrfXni ¼ 1g ¼ ci þ ð1 $ ciÞP ¼ ci þ P $ ciP ¼ Pþ cið1 $ PÞ: ð7Þ

It is evident from Equation (7) that the probability of a correct response P without
guessing is moderated by a second term that is a product of the guessing
parameter ci and the probability 1 $ P of an incorrect response. Thus the greater
the probability P, that is, the greater the relative proficiency of a person, the
smaller the value of 1 $ P and the smaller the impact of guessing on the response.

To reduce the impact of guessing for persons with relatively high proficiency
while retaining the same lower asymptote, the term 1 $ P can be modified sim-
ply by raising it to any value greater than 1. We confine ourselves in this article to
integer values giving

PrfXni ¼ 1g ¼ Pþ cið1 $ PÞy; ð8Þ

where y is any positive integer. This generalization of the 3PL model is used to
generate a class of models in which the difficulty of an item relative to the
proficiency of a person models random guessing as a deviation from the Rasch
model. We choose a value for y in this article, which mirrors the real example.

To illustrate the effect of a larger value for y, Figure 2 shows three probability
functions where P is the Rasch model of Equation (1) in which (a) ci ¼
0; ai ¼ 1; (b) ci ¼ 1=7; ai ¼ 1; and y ¼ 1 in Equation (6) which provides
an asymptote for guessing corresponding to seven response alternatives; and
(c) ci ¼ 1=7; ai ¼ 1, y ¼ 15 in Equation (6) which reduces the impact of random
guessing for the more proficient persons relative to the case where y ¼ 1, as in the
3PL. The value of ci ¼ 1=7 is taken as a summary value for the asymptote of the
guessing in the ARPM in which items have either six or eight alternatives.

5. Simulation Algorithm and Design

Equation (8) was used to simulate guessing as a function of proficiency.
The value for the power y was chosen to approximate the evidence from the
ARPM data based on the following rationale. In Figure 1 referred to earlier,
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Probabilidade de acerto
segundo modelo de Rasch

(sem acerto ao acaso)

é .. moderada pelo c multiplicado 
pela distância entre a habilidade 
da pessoa vs dificuldade do item Q = 1-P

y redutor do efeito do c
Em pessoas com alta 
habilidade
relativa ao item

Parâmetro c como moderador !



which shows the ICCs for ARPM test items which were hypothesized to have
guessing, the proportion of persons who answered an item correctly for class
intervals with mean location of persons below approximately !1.0 were greater
than the ICC. The grouping of persons in class intervals blurs the specific details
of guessing, but relative to a mean item difficulty of 0, which was the identifying
constraint, we take !1.0 logits as a reference for guessing to an item with a dif-
ficulty of 1 logit. Guessing is not evident at an item difficulty of 0. Thus, guessing
is evident for persons with proficiency 2 logits below the item’s difficulty, which
according to the Rasch model corresponds with a probability of just 0.12 of a cor-
rect response.

A choice of y ¼ 15 for the simulated example approximates the conditions
observed above for the real example. Other real data sets may be approximated
better by different values of y. In the 3PL model, when b! d ¼ !1:0, the
increase in probability of obtaining a correct response relative to the Rasch model
as a result of guessing is 0.104. In contrast, the increase in probability if y ¼ 15 is
0.001. Thus in the simulation, guessing increases the probability of a correct
response when b! d < !1:0 and guessing below this level of proficiency
approximates the pattern evident in the ARPM data. In summary, to emulate the
ARPM data in the simulated example, the responses are generated according to
Equation (8) in which P is the Rasch model of Equation (1), ci ¼ 1=7 ; and
y ¼ 15. We note that this analysis of the ARPM and choice of the simulating

FIGURE 2. Item characteristic curves for the Rasch model, the 3PL and the generalized

guessing model with y ¼ 15.

Andrich et al.
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Caminho do meio ...
(porque não o melhor dos dois mundos?)



Questões basais

• Quanto, de fato, os resultados dos sujeitos e dos itens diferem ao 
utilizarmos um ou outro modelo ? 



Prova Docente

• “A Prova Nacional de Concurso para Ingresso na Carreira Docente tem o objetivo principal
de subsidiar os Estados, o Distrito Federal e os Municípios na realização de concursos
públicos para a contratação de docentes para a educação básica. Trata-se de uma prova
anual, a ser aplicada de forma descentralizada em todo o país para os candidatos ao ingresso
na carreira docente das redes de educação básica.”



Matriz de Referência



Objetos (áreas) de conhecimento
Processos (competências)

P1 P2 P3 P4 P5 Total
Políticas Educacionais (POL) 36 36
Organização e Gestão do Trabalho Pedagógico
(OGTP) 12 12 12 36
Desenvolvimento e Aprendizagem (DES) 12 12 12 36
Língua Portuguesa (LP) 6 8 8 8 30
Matemática (MAT) 6 8 8 8 30
História (HIS) 6 8 8 8 30
Geografia (GEO) 6 8 8 8 30
Ciências da Natureza (CN) 6 8 8 8 30
Arte (ART) 6 8 8 8 30
Educação Física (EF) 8 8 8 24
Total 36 36 80 80 80 312

Mapa de itens do pré-teste



Dados do pré-teste da Prova Docente

• Uso de Blocos Balanceados Incompletos (BIB) e distribuição de cadernos em espiral.
• Equalização e link por: desenho de grupo equivalente e itens comuns

• 312 itens divididos em dois subconjuntos de 156 itens (B1 e B2)
• Formaram-se: 26 blocos de 12 itens -> 52 cadernos de 36 itens

• Itens comuns entre cadernos (12)
• Amostras randomicamente equivalentes aos cadernos
• Amostras representativas para estimação de correlações entre qualquer par de item (para se

calcular a correlação entre eles).
• N = 10.588 pessoas (professores e estudantes): 5.759 B1 e 4.829 B2
• AFE e AFC testando-se a unidimensionalidade



Objetivos e Método

• Comparar as estimativas dos parâmetros pelo modelo de Rasch e 3-parâmetros.

• Calibração dos parâmetros:

• 3-parâmetros: XCALIBRE 4.1 (Guyer, & Thompson, 2012) que implementa o método de
estimação de máxima verossimilhança marginal (MML) e EAP para os Thetas

• 1-parâmetro (modelo de Rasch): WINSTEPS (Linacre, 2009) que implementa o método de
máxima verosimilhança conjunta (JMLE)

• Zero na escala de habilidade para identificar a métrica

• Análise correlacional entre os parâmetros
• Calibrados itens com cargas aceitáveis no fator geral
• Estimativas dos sujeitos não otimizadas !!



Índices de ajuste no modelo de Rasch
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 Exemplos de padrões de 

resposta à 12 itens em 3 níveis 

de dificuldade 

 Índices de Ajuste 

Padrões Fácil Médio Difícil  INFIT OUTFIT 

1. Padrão ajustado 1110 1011 1000  <1,3 <1,3 

       

2. Descuido/Desatenção 0111 1111 0000  <1,3 >>1,3 

3. “Chute” com sorte 1110 1110 0001  <1,3 >>1,3 

4. Conhecimento específico 1111 0001 1100  >>1,3 <1,3 

5. Padrão assistematico 0000 0111 1111  >>1,3 >>1,3 

 



 
 
Item information 

Seq. ID Model Key Scored Num Options Domain Flags 
158 V158 3PL B Yes 4 1  

 
Classical statistics 

N P S-Rpbis T-Rpbis Alpha w/o 
1100 0.724 0.336 0.506 0.738 

 
IRT parameters 
a b c a SE b SE c SE Chi-sq df p z Resid p 
1.060 -0.844 0.172 0.036 0.037 0.019 37.561 15 0.001 0.413 0.679 

 
Option statistics 

Option N Prop. S-Rpbis T-Rpbis Mean SD  
A 40 0.036 -0.112 -0.163 -0.774 0.944  
B 796 0.724 0.336 0.506 0.273 0.761 **KEY** 
C 133 0.121 -0.141 -0.242 -0.604 0.722  
D 125 0.114 -0.233 -0.339 -0.874 0.885  
Omit 6 0.005 -0.126 -0.130 -1.608 1.176  
Not Admin 9488    0.003 0.557  

 



Resultados

 M DP N  1 2 3 4 5 
BIB 1          

1. b 3p -0,405 1,490 111  1     
2. b 1p -0,821 1.134 111  0,973** 1    
3. a 0,824 0,247 111  0,007 -0,061 1   
4. c 0,192 0,011 111  -0,403** -0,417** -0,574** 1  
5. Infit 0,996 0,054 111  0,340** 0,364** -0,848** 0,332** 1 
6. Outfit 0,979 0,117 111  0,496** 0,586** -0,747** 0,145 0,867** 

BIB 2          
1. b 3p -0,487 1,579 118  1     
2. b 1p -0,834 1,137 118  0,978** 1    
3. a 0,812 0,246 118  0,050 -0,048 1   
4. c 0,177 0,009 118  -0,544** -0,554** -0,549** 1  
5. Infit 0,996 0,057 118  0,367** 0,442** -0,814** 0,207* 1 
6. Outfit 0,983 0,129 118  0,459** 0,576** -0,658** -0,034 0,876** 

 





Escores Theta M DP N  m1Fgth m1F1th m1F2th 

BIB 1        
m3FgTh 0,013 0,879 5463  0,974** 0,832** 0,781** 
m3F1Th -0,004 0,802 5463  0,849** 0,947** 0,575** 
m3F2Th 0,021 0,737 5463  0,826** 0,588** 0,936** 
        
m1Fgth 0,005 0,884 5463     
m1F1th 0,109 1,085 5463     
m1F2th 0,003 1,112 5463     

BIB 2        
m3FgTh 0,013 0,883 4769  0,975** 0,704** 0,917** 
m3F1Th -0,027 0,688 4769  0,716** 0,941** 0,590** 
m3F2Th 0,011 0,860 4769  0,927** 0,575** 0,967** 
        
m1Fgth 0,004 0,870 4769     
m1F1th 0,356 1.235 4769     
m1F2th 0,011 0,947 4769     

 





Precisão Local (Curva de informação na escala
precisão 0-1)

• Lembrança: prova com 36 itens – não é o formato final da Prova Docente!



Conclusões
• Correlação entre as pontuações theta, segundo os dois modelos, que estão altamente 

correlacionadas de 0,94 a 0,97 
• Independente do modelo tem-se pontuações bastante similares para os sujeitos. 

• As variações que se observam nas Figuras 3, 4 e 5 dos thetas calculados segundo o modelo de três parâmetros para um mesmo 
theta (e consequentemente o mesmo escore total) no modelo de Rasch terá a ver com os parâmetros de discriminação dos 
itens em causa já que no modelo de Rasch “o escore total é uma estatística suficiente. Assim, uma mesma estimativa de escore 
theta é recebida independentemente de qual itens o sujeito acertou ou errou. Para o modelo de dois parâmetros, o qual 
contém  itens com diferentes discriminações, a estimativa do nível de escore theta depende de exatamente quais itens se 
acertou e errou. Acertando-se itens relativamente mais discriminativos leva a estimativas de theta mais altas” (Embretson & 
Reise, 2006, p.60). 

• A variação da estimativa no modelo de três parâmetros está relacionada ao índice infit dos 
sujeitos. Quanto mais ajustado o padrão de resposta do sujeito mais ele será atraído para a 
média.

• A precisão pelo modelo de Rasch é superestimada já que não modela o “c”
• Linacre (2013): “In general, the information in a response that fits the dichotomous Rasch model contains more statistical

information than an equivalent response that fits the 3-PL model. This is because of the information that is lost due to the
lower asymptote, c parameter. For example, suppose that the c parameter is 0.99, then there is almost no information in the
response. If the item-sample targeting is at 70%  success and c=.2, we expect a 3-PL response to contain around 67% of the
information in a Rasch response”

• Solução: estimar b e theta no Rasch adaptativamente (usando o comando CUTLOW no 
Winsteps) eliminando itens muito difíceis para estimar as habilidades de pessoas com baixa 
habilidade (Andrich e cols. 2012).



Coefficients:
Gussng Dffclt Dscrmn

i01   0.227  -0.526   1.841
i03   0.101  -1.013   1.843



http://www.econometricsbysimulation.com/2012/09/playing-around-with-irt-graphs.html
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