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Bifactor measurement models are increasingly being applied to personality and psychopathology mea-
sures (Reise, 2012). In this work, authors generally have emphasized model fit, and their typical
conclusion is that a bifactor model provides a superior fit relative to alternative subordinate models. Often
unexplored, however, are important statistical indices that can substantially improve the psychometric
analysis of a measure. We provide a review of the particularly valuable statistical indices one can derive
from bifactor models. They include omega reliability coefficients, factor determinacy, construct reliabil-
ity, explained common variance, and percentage of uncontaminated correlations. We describe how these
indices can be calculated and used to inform: (a) the quality of unit-weighted total and subscale score
composites, as well as factor score estimates, and (b) the specification and quality of a measurement

model in structural equation modeling.
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Many psychological measures are designed primarily to scale
individuals on a single construct. Psychological traits (e.g., depres-
sion, anxiety), however, often have content diverse manifestations
and, thus, corresponding measures include one or more items from
heterogeneous content domains to achieve content validity. As a
consequence, many, if not most, commonly used assessment scales
yield item response data that are more or less consistent with both
unidimensional (i.e., a strong general factor) and multidimensional
(i.e., two or more conceptually narrower, correlated factors) mea-
surement models (e.g., Reise & Haviland, 2005; Reise, Moore, &
Haviland, 2010).

In recent years, several authors have argued that for measures
yielding multidimensional data caused by a domain structure, a
bifactor measurement model (Holzinger & Harman, 1938; Holz-
inger & Swineford, 1937) may provide a particularly useful struc-
tural representation and be a valuable psychometric tool (Canivez,
in press; Chen, Hayes, Carver, Laurenceau, & Zhang, 2012; Chen,
West, & Sousa, 2006; Gignac, Palmer, & Stough, 2007; Reise,
2012; Reise, Bonifay, & Haviland, 2013; Reise et al., 2010; Reise,
Morizot, & Hays, 2007). A bifactor measurement model specifies
that for a given set of item responses, correlations among items can
be accounted for by: (a) a general factor representing shared
variance among all the items and (b) a set of group factors where
variance over and above the general factor is shared among subsets
of items presumed to be highly similar in content. Commonly
assumed, too, is that the general and group factors are orthogonal.
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The general factor represents the broad central construct an
instrument intends to measure, whereas group factors represent
more conceptually specific subdomain constructs. Substan-
tively, bifactor models primarily have been used to: (a) study
the partitioning of variance when it is believed that an instru-
ment assesses both general and group sources of variance
(Simms, Gros, Watson, & O’Hara, 2008), (b) control for mul-
tidimensionality, such that the measure is “essentially unidi-
mensional” but with nuisance dimensions (Chen et al., 2006;
Raykov & Pohl, 2013), (c) judge whether multidimensional
item response data have a strong enough general factor to
justify a unidimensional measurement model (Reise, Morizot,
& Hays, 2007; Reise, Scheines, Widaman, & Haviland, 2013),
and (d) determine the adequacy of a total score and what, if
anything, one might gain by scoring subscales (Reise, 2012;
Reise, Bonifay et al., 2013; Reise et al., 2010).

Of late, an increasing number of bifactor modeling applications
have been published in major psychopathology, personality, and
assessment journals. Despite this encouraging occurrence, the pri-
mary aim in most studies simply is to find a relatively better-fitting
model. In the present research, we expand on this work by pro-
viding a practical guide to computing important statistical indices
one can derive from bifactor models." They include omega reli-
ability coefficients, factor determinacy, construct reliability, ex-
plained common variance, and percentage of uncontaminated cor-
relations. We describe how these indices can be calculated and
used to inform the: (a) quality of unit-weighted total and subscale
score composites,? as well as factor score estimates and (b) spec-

! The material also is relevant to any measure with correlated factors or
a second-order structure. Data that are consistent with these models are
likely to be consistent with a bifactor structure.

2 Similar work on evaluating the relative merits of total and subscale
scores in educational measurement contexts can be found in Sinharay,
Haberman, and Puhan (2007) and Sinharay, Puhan, and Haberman
(2011).
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2 RODRIGUEZ, REISE, AND HAVILAND

ification and quality of a measurement model in structural equation
modeling (SEM).

Statistical Indices Derived From Bifactor Models

Before presenting these indices, we must make three clarifica-
tions. First, our presentation here concerns bifactor models fit to
specific personality and psychopathology measures, which pre-
sumably have a general factor and group factors caused by clusters
of items with similar content. Our guide is not directed to inter-
preting hierarchical structures of omnibus inventories such as the
Revised NEO Personality Inventory-3 (McCrae & Costa, 2010).
Second, for simplicity, we assume throughout that a well-fitting
confirmatory bifactor model has been estimated, with standardized
parameters and an independent cluster structure (i.e., items load on
the general factor and on only one group factor). Nevertheless, the
following statistics can be computed and interpreted for explor-
atory bifactor models as well, where the above conditions may not
hold strictly. Finally, we note that the indices vary in the degree to
which they are applicable only to bifactor models. Some indices—
for example, the percentage of uncontaminated correlations (de-
scribed below)—are bifactor-specific. Others, such as indices of
factor determinacy or coefficient omega, can be calculated for
several model types.

Fundamental Definitions

Because our basic latent structural model is a bifactor model, of
primary importance is how an item’s variance is partitioned in this
framework (Figure 1).

The first two boxes represent the item variance due to a general
and the group factors, respectively; these sources “cause” items to
be correlated. In factor analytic terms, this is known as percent of
common variance and labeled, “communality.” The third box
represents an item’s reliable variance that is unique to each item
(not shared with any other item), and the final box is variance
attributable to random error. In factor analysis, specific variance
and error variance cannot be separated, typically, and thus are
combined in the “uniqueness” term.

What this means is that general, group, and specific sources
of variance represent systematic, repeatable, and thus reliable
sources of variance, whereas internal consistency estimates of
reliability either lump the specific variance in the error term of
the classic true plus error score model (X = T + E) or in the
uniqueness in the common plus uniqueness factor model (X =
C + U). As such, internal consistency indices are said to be
negatively biased and only will equal the reliability when there
is no item specific variance (Bentler, 2009). Note, also, that
understanding the transition from the X = T + E true score
model to the X = C + U common factor model is critical in
recognizing distinctions between coefficient alpha and “model-
based’ reliability indices such as coefficient omega.

General Group Specific Error

Figure 1. Sources of item variance.

A second important aspect of the graphic is that the bifactor
model, which contains general and group sources of common
variance, clearly, is multidimensional (i.e., multiple common
sources of item variance and between item covariance). Given the
bifactor model, in either the X = T + E orthe X = C + U
representations, T and C have two sources of variance, respec-
tively. In turn, the percent of observed variance in a unit-weighted
composite score has two sources of systematic influence (i.e., X =
Tgen T Tgrp T E or X = Cgen T Cgrp + U). This, however,
does not imply that the “construct is multidimensional” or that the
construct is a “blend of dimensions,” but rather, merely that a
unit-weighted composite score has more than one systematic
source of variance. This not only complicates the interpretation of
the composite score, it also complicates the interpretation of in-
ternal consistency indices such as alpha. One important goal,
however, of the omega indices described below is to separate out
the reliable variance in a composite attributable to either general or
group factors.

Example Data

For the running example, we use the standardized factor load-
ings from a bifactor model reported in Osman et al. (2009, pp.
207-208). The Osman et al. data are based on a sample of ado-
lescents (n = 287) from two inpatient units of a Midwestern state
psychiatric hospital who completed the 39-item, self-report Mul-
tidimensional Anxiety Scale for Children (MASC; March, 1998).
The general construct is anxiety with four subdomains, herein
referred to interchangeably as group factors. These consist of the
12 physical symptom (PS) items, nine harm avoidance (HA) items,
nine social anxiety (SA) items, and nine separation anxiety/panic
(SP) items. In practice, these likely would be scored and reported
along with the total scale score (Ivarsson, 2006; Olason, Sigh-
vatsson, & Smari, 2004). Participants rated MASC items (e.g.,
“I'm tense,” “I always obey,” “I follow others,” “I look stupid,”
“I’m restless”) on a 4-point ordinal scale: 0 = never true about me,
1 = rarely true about me, 2 = sometimes true about me, and 3 =
often true about me. Higher total scale and subscale scores reflect
greater levels of general and domain specific anxiety, respectively.
Item content and assignment of items to group factors (or sub-
scales) are presented in Table 1.

In the original study, all 39 MASC items were specified to load
on the general factor and on only one corresponding group factor
(see Table 2); cross-loadings on group factors were not permitted,
and thus all remaining loadings were constrained to zero. More-
over, group factors were orthogonal to each other and the general
factor. Model fit indices were not reported for the final bifactor
model;* however, Osman et al. (2009) concluded that support was
found for a bifactor structure comprised of a general factor and
four subdomains; 53.41% of the variance was attributed to the
general factor, 2.39% to PS, 5.98% to HA, 3.75% to SA, and
1.43% to SP.

3 Traditional fit indices were not reported because item parameter esti-
mation was not based on recovering a covariance or correlation matrix. The
authors used TESTFACT (Wood et al., 2003), a full-information item
factor analysis program, not an SEM program.
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Using the Example Data Factor Loadings

Coefficient Alpha

Although coefficient alpha (Cronbach, 1951) is the most uni-
versally reported index of internal consistency reliability, it also is
the most reviled (Bentler, 2009; Revelle & Zinbarg, 2009; Sijtsma,
2009) and misunderstood (Cortina, 1993; Dunn, Baguley, &
Brunsden, 2014; John & Soto, 2007; Schmitt, 1996; Yang &
Green, 2011). To fully appreciate the omega indices derived from
bifactor models, we begin with the basics and limits of coefficient
alpha.

When coefficient alpha is computed based on a correlation
matrix, and not a covariance matrix, it is “standardized coefficient
alpha.” It is an estimate of the percent of reliable variance in the
unit-weighted total score if the items first were standardized and
then added together to form a composite score. Two familiar
formulas for alpha are:

Table 1
Items From the Multidimensional Anxiety Scale for Children

Item Item # Subscale Content

1 1 PS Tense

2 6 PS Shaky

3 8 PS Jumpy

4 12 PS Feel weird

5 15 PS Restless

6 18 PS Shaking

7 20 PS Breathing

8 24 PS Dizzy

9 27 PS Chest tight
10 31 PS Heart
11 35 PS Gastrointestinal
12 38 PS Sweaty
13 2 HA Permission
14 5 HA Always obey
15 11 HA Follow others
16 13 HA Do right
17 21 HA Eyes open
18 25 HA Check first
19 28 HA Avoid upsets
20 32 HA Let know
21 36 HA Check safety
22 3 SA Laugh at me
23 10 SA Make fun
24 14 SA Look stupid
25 16 SA Others think
26 22 SA Embarrassed
27 29 SA Ask to play
28 33 SA Called on
29 37 SA Public perform
30 39 SA Shy
31 4 SP Separation
32 7 SP Go to camp
33 9 SP Near mom
34 17 SP Night light
35 19 SP Alone
36 23 SP Scary movies
37 26 SP Sleep next to
38 30 SP Car or bus
39 34 SP Phobic

Note. PS = Physical Symptoms; HA = Harm Avoidance; SA = Social
Anxiety; and SP = Separation Anxiety/Panic.

Table 2

Standardized Factor Loadings From Osman et al. (2009)

Item General PS HA SA SP I-ECV
1 38 —.13 0 0 0 .89
2 .82 10 0 0 0 98
3 .82 38 0 0 0 .82
4 77 35 0 0 0 .83
5 74 28 0 0 0 .87
6 98 .02 0 0 0 99
7 77 28 0 0 0 .88
8 .79 32 0 0 0 .86
9 .66 39 0 0 0 74

10 .73 19 0 0 0 94
11 .82 42 0 0 0 .79
12 .98 11 0 0 0 99
13 24 0 .59 0 0 .14
14 .56 0 43 0 0 .63
15 .06 0 78 0 0 .01
16 S1 0 71 0 0 34
17 46 0 45 0 0 Sl
18 .68 0 13 0 0 .96
19 .59 0 43 0 0 .65
20 71 0 17 0 0 .94
21 .60 0 .50 0 0 .59
22 55 0 0 75 0 35
23 83 0 0 47 0 .76
24 97 0 0 .06 0 99
25 90 0 0 31 0 .89
26 .81 0 0 S 0 72
27 .90 0 0 .36 0 .86
28 .60 0 0 27 0 .83
29 78 0 0 28 0 .89
30 .65 0 0 17 0 93
31 .60 0 0 0 24 86
32 .84 0 0 0 .36 84
33 .66 0 0 0 .26 86
34 73 0 0 0 .09 98
35 .70 0 0 0 .10 98
36 .76 0 0 0 28 .88
37 74 0 0 0 16 95
38 .86 0 0 0 11 98
39 .76 0 0 0 41 77

Note. PS = Physical Symptoms; HA = Harm Avoidance; SA = Social
Anxiety; and SP = Separation Anxiety/Panic. I-ECV is the item explained
common variance.

k—1 o2 NN

c

k 2 kr
o¢=—{1—20’l },or,o& 7 (1)

Where k is the number of items, E(riz is the sum of item
variances, crf is the variance of the total composite score, and 7 is
the average item intercorrelation. The second formula is the
Spearman-Brown prophecy. When the items are standardized, item
variances all are 1s; therefore, the sum of item variances is 1%k,
and the variance of the total score is the sum of the correlation
matrix.*

When a researcher does not have access to the original item
response data or the original correlation matrix (which would be a

4 By the variance sum law, which states that the variance of a composite
is equal to the sum of the variances of each component, plus two times the
sum of the covariances across all item pairs. When the items are standard-
ized, the correlation equals the covariance.
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polychoric correlation matrix for the Osman et al. [2009] example
given the ordinal item response data), standardized alpha for the
total scores can be estimated based on the bifactor loading matrix
(see Table 2) as follows (see Zinbarg, Revelle, Yovel, & Li, 2005,
Equation 10).° For the unidimensional case, alternative formulas
are provided in Miller (1995) and Raykov (1997a, 1997b).

o=

k <1T>\gm>\7 1= N + 10, N 1—TR(>\g,p>\§,p)>

gen gen gen 8rp 8rp
k—1 Var(total)

(€5

In Equation 2, 1 is a 39 by 1 column vector of unities, A, is the
39 by 1 matrix of loadings on the general factor, and \,,,,, is the 39
by 4 matrix of standardized loadings for the group factors. The 7R
term stands for trace, the sum of the diagonal values of the
resulting 39 by 39 matrix. The variance of total scores can be
estimated using the sum of the loadings on each factor, squared,
plus the sum of the error variances.

Var(total) = (2)‘301)2 + (E)‘grpl)2 + (E)‘grzﬁ)z + (E)‘grlﬁ)z

F(SNgpa)* + 2 (1= 1) 3)
| 39(745.84 — 20.50 +39.05 — 527\ _
TS 798.12 B

Using these formulas, standardized coefficient alpha for the total
scale score is .98.

This value, typically, would be considered superb; almost all of
the observed score variance can be attributed to “true score”
variance. To what extent is this useful information, however, given
that the item response data are multidimensional, which clearly is
the case here? We consider this below.

Similarly, coefficient alpha can be computed for subscale scores
by using the appropriate submatrices from the bifactor solution.
For the PS scale, for example, we would need only the general and
group factor loadings and error variances for the first 12 items.
Using this procedure, the standardized alpha values for the four
subscales are: .95 for PS, .88 for HA, .96 for SA, and .93 for SP.
These (internal consistency) reliability values for the subscales,
too, would be considered laudatory in an applied context. Again,
however, we ask what do these values actually represent when the
subscale scores clearly have two common sources of variance,
general and group factors?

We are by no means the first authors to express concerns
regarding the interpretation and value of coefficient alpha; but
again, a summary of these concerns is necessary to understand
what one gains by using bifactor model-derived indices. Briefly,
alpha can be an accurate estimator of the ratio of true to observed
scores, but its psychometric properties and interpretability depends
critically on two important properties of the data: (a) they are
unidimensional (one common factor such that true score variation
reflects a single common source of variance) with no correlated
residuals and (b) the relation between the items and true score (or
the latent variable) are essentially tau equivalent (Graham, 2006).
In factor analytic terms, essential tau equivalence implies that the
items all have equal slope relating the latent variable to the
observed responses, but the items can vary in factor intercept (i.e.,
means).

With this foundation,® we review two major concerns with alpha
of particular relevance to our guide. First, if the items vary widely
in factor loadings, and thus essential tau equivalence is an unrea-
sonable assumption, then coefficient alpha seriously can underes-
timate the reliability of unit-weighted composite scores (Graham,
2006; Schmitt, 1996). Second, when the data are multidimen-
sional, as in a bifactor model, alpha is influenced by all sources of
common variance, and it loses its appropriateness as an indicator
of how well a total or subscale score reflects a single latent
variable. In fact, research has shown that alpha can be quite high
(as in the present example), even when data are multidimensional,
and the dimensions are orthogonal (Cortina, 1993).

To assess the interpretability of a total or subscale score in the
presence of multidimensionality, in particular, multidimensionality
that fits a bifactor structure, indices are required that estimate the
degree to which the percent of variance in total or subscale scores
is attributable to variance associated with a single latent variable.
Previous authors have suggested estimating this with bifactor
modeling, specifically, computing indices such as coefficient
omega, omega hierarchical, and omega hierarchical subscale
(Canivez, in press; Gustafsson & Aberg-Bengtsson, 2010; McDon-
ald, 1999; Reise, 2012; Reise et al., 2010; Revelle & Zinbarg,
2009; Zinbarg et al., 2005). Following are descriptions, equations,
and computations for each using the standardized factor loading
matrix from the MASC.

Coefficient Omega

Coefficient omega (w; McDonald, 1999; Revelle & Zinbarg,
2009; Zinbarg et al., 2005) is a factor analytic model-based reli-
ability estimate. It has its origin in Joreskog (1971). Omega esti-
mates the proportion of variance in the observed total score attrib-
utable to all “modeled” sources of common variance (Reise,
Bonifay et al., 2013; Revelle & Zinbarg, 2009). The term modeled
is required because if a common source of variance is not included
in the factor model, omega cannot account for it.

The differences between coefficients alpha and omega are that:
(a) omega always is based on the factor loadings of a specific
model, whereas alpha, typically, is computed based on observed
variances and covariances and (b) alpha assumes equal loadings
(essential tau equivalence), whereas omega is more appropriate
when loadings vary (congeneric). Dunn et al. (2014) provide
further review of the differences between alpha and omega (see
also, Gignac & Watkins, 2013). Like alpha, the interpretability of
both alpha and omega depends critically on the data being unidi-
mensional (see Graham, 2006; McDonald, 1999). Here we present
omega for multidimensional data with bifactor structure as justi-
fied in Zinbarg et al. (2005).

5 The four parts of the numerator in Equation 2 are, in order (a) the sum
of general factor loadings, squared, (b) the sum of the squared general
factor loadings, (c) for each group factor, the sum of loadings, squared,
which are then summed, and (d) the sum of the squared group factor
loadings.

¢ The properties of alpha as an estimator of reliability are complicated.
For a thoughtful and extensive review and demonstration, Zinbarg, Rev-
elle, Yovel, and Li (2005) examine alpha under different definitions of
what constitutes reliable variance, under conditions of multidimensional
(bifactor) and unidimensional data, and varying loadings.
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For the MASC, if General Anxiety (ANX) were a general factor
in a bifactor structure, and PS, HA, SA, and SP items loaded on
four group factors, respectively, then omega for the total score is
computed as:

(BENgen)® + CNgrp1)® + (Eg0)°
+ () + ENg0)?

o= “)
(Exgen)z + (E)\grpl)2 + (2)\grp2)2
+ (ExgrpS)Z + (E)\grp4)2 + 2(1 - hz)
745.84 +7.34 + 17.56 + 10.11 + 4.04
W= =98

798.12

The numerator in Equation 4 represents all of the common
sources of unit-weighted total score variance, and the denominator
is the unit-weighted total score variance (again, assuming items
first are standardized). Stated differently, the denominator is all the
common sources of total score variance plus the unique variance.
Observe that the numerator for omega is the same as the first and
third terms in the numerator for the alpha equation provided
previously.

The same logic can be applied to the MASC subscales, one
subset of items at a time, by using loadings and error terms
corresponding to each set of items on a group factor. Using only
the parameter estimates for the first 12 items, for example, omega
for the PS subscale is computed as:

e — (2 )\ANX)Z + (2 )\Ps)2
" (Ehawx)? + (S Nps)? +2(1 1)

8575 + 734 o6
8575+ 734+3.69

(&)

Wpg

Following similar calculations, coefficient omega for the re-
maining subscales (HA, SA, and SP) are .90, .97, .93, respectively.

It is important to note that like alpha, omega reliability estimates
reflect all sources of common variance, and item-specific variance
and random error are considered error. For the total and subscale
score reliability, variance of the general factor, as well as the group
factors, are combined to obtain the reliability estimate. Unlike
alpha, omega has the advantage that a researcher would be well
aware of the multiple sources by virtue of having to specify a
factor model to compute omega. To clarify the relative role of
these various sources in determining composite score variance,
alternative indices have been developed, namely coefficient omega
hierarchical and coefficient omega hierarchical subscale (McDon-
ald, 1999; Reise, 2012; Zinbarg et al., 2005). These coefficients
take advantage of the orthogonality of group and general factors,
which, in turn, allows for a unique partitioning of the common
sources of variance affecting composite scores.

Omega Hierarchical

When data are suitably represented by a bifactor structure,
coefficient omega hierarchical (omegaH or wy) is a useful model-
based reliability index. Unlike alpha and omega, which estimate
the proportion of variance attributable to all sources of common
variance, coefficient omegaH estimates the proportion of variance
in total scores that can be attributed to a single general factor,

thereby, treating variability in scores due to group factors as
measurement error (McDonald, 1999; Reise, Moore, & Haviland,
2013; Zinbarg, Barlow, & Brown, 1997; Zinbarg et al., 2005;
Zinbarg, Yovel, Revelle, & McDonald, 2006).

Coefficient omegaH is computed by dividing the squared sum of
the factor loadings on the general factor by the (model estimated)
variance of total scores:

= (2 )\gen)2 6
Wy = > )\gen)2 + )\gml)Z + S )\gmz)z (0)
(S hgps)? + (S + 2 (1= 1)
® (2 M)

- SN + S Nps)* + ()’
+ (2 ) + R hep)’ + 21— 1)
For the MASC, coefficient omegaH is calculated as:

74584
79812

Wy

This value means that 93% of the variance of unit-weighted total
scores can be attributed to the individual differences on the general
factor. The square root of omegaH (.96) is the correlation between
the general factor and the observed total scores. A comparison of
omegaH (.93) with omega (.98) is critical. For the MASC, we see
that almost all of the reliable variance in total scores (.93/98 = .95)
can be attributed to the general factor, assumed to reflect individ-
ual differences on the trait of anxiety. Only 5% (.98 —.93) of the
reliable variance in total scores can be attributed to the multidi-
mensionality caused by the group factors. Only 2% is estimated to
be due to random error. Thus, and critically, raw total scores can
be interpreted as an essentially unidimensional reflection of anx-
iety, despite the presence of clear multidimensionality of the data.

Omega Hierarchical Subscale

A common practice in psychological research is to report coef-
ficient alpha (less common but better, coefficient omega) for both
the total scale scores as well as for subscale scores. Both alpha and
omega values, however, can mislead researchers to have greater
confidence than justified in the reliability of total and subscale
scores as a reflection of a single latent variable. This was illus-
trated by the difference in omega and omegaH estimates for the
MASC’s general factor. Similarly, coefficient omega values for
the four subscales are misleading if interpreted as reliable variance
of a group factor which, in turn, may inappropriately prompt
researchers to report subscale scores (and seek to identify their
individual correlates).

When a bifactor model is fit to multidimensional data, however,
the logic of omegaH can be extended to subscales by computing
the unique variance associated with each group factor once parti-
tioning out variance associated with a general factor. This is
achieved by computing coefficient omega hierarchical subscale
(omegaHS or wys). OmegaHS is an index reflecting the reliability
of a subscale score after controlling for the variance due to the
general factor (Reise, Bonifay et al., 2013). To illustrate, omegaHS
for the PS subscale is computed as:
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- (ZNps)®

HS.PS (2 )\ANX)Z + (E )\PS)Z + 2(1 o h2)
7.34 -

(85.75 + 7.34 + 3.69)

N

08

WhHs Ps =

As above, only the parameter estimates for the first 12 items
would be used in this computation. Coefficient omegaHS for the
remaining group factors are: HA = .43, SA = .17, and SP = .08,
respectively. Notice that the only computational difference be-
tween wpg and wyg pg is that, in the numerator, the term associated
with variance on the general factor is removed, leaving only the
variance associated with the group factor.

Compared to the original omega coefficients for the subscales
(.96, .90, .97, .93), the computed omegaHS reliability estimates are
substantially reduced once controlling for a general factor (i.e., .08,
43, .17, .08). This is not surprising given that the group factors are
residualized factors (representing covariances among items after
removing the general factor) and that the items tend to load higher
on the general than group factors (see Table 2). Clearly, once
partitioning out the variance for the general factor, very little
common variance remains, and, thus, subscale reliability dwindles.
The apparent reliability of subscales judged by coefficient omega
mostly is attributable to individual differences on the general
factor.

Factor Determinacy and Construct Reliability

Latent variable modeling techniques, such as exploratory and
confirmatory (restricted) factor analysis, are especially appropriate
and useful for: (a) justifying the scoring of a set of items as
reflecting an assumed, underlying, causal, latent variable and (b)
developing measurement models for structural equation modeling
(SEM), where the ultimate objective is to control for errors in
measurement to better estimate the disattenuated (correcting for
unreliability) relations among latent variables.

The omega values reviewed above, particularly when compared
to corresponding omega values for subscales, importantly can
inform: (a) on the reliability of subscale scores, (b) where the
sources of reliable variance originate (general vs. group), and (c)
ultimately, whether the unit-weighted scoring of subscales is jus-
tifiable. A psychometric analysis to determine the desirability of
raw unit-weighted scoring of subscales, however, is not their only
use.

Researchers also may ask, for example, given the results of
fitting a bifactor model, what can they learn about: (a) the value of
estimating factor scores,’ especially for group factors, and then
using these scores in subsequent analyses, and, in turn, (b) the
value of specifying general and group factors in a measurement
model in an SEM framework. We believe that these two questions
can be answered adequately with studies of factor determinacy
(FD; Grice, 2001) and construct reliability (Hancock, 2001; Han-
cock & Mueller, 2001).

We first consider factor score determinacy, its calculation and
role in judging the viability of using factor scores as proxies for
individual differences on a latent variable. The issue of factor score
determinacy is a technically complicated one, which originated
with the discovery that even in a well-fitting model, “an infinite
number of ways of scoring the individuals on the factors could be

derived that would be consistent with the same factor loadings”
(Grice, 2001, p. 431). To the degree that factor scores are inde-
terminate, two researchers may estimate factor scores on the same
data using two different methods, and the resulting scores may
even be negatively correlated. On the other hand, to the degree that
factor scores are determinate, researchers confidently can assume
that individual differences on the factor score estimates are good
representations of true individual differences on the factor.

In the context of a bifactor model, the determinacy of the
general factor seldom will be a concern, given that all items in a
measure are assumed to load saliently on this factor. What is a
potential concern, however, are the group factors, which typically
have few indicators and relatively lower loadings. There are sev-
eral approaches to computing the degree of factor determinacy. To
demonstrate, we will use the formula suggested in Beauducel
(2011; Equation 4). This formula is convenient because it relies
only on the model reproduced correlation matrix and not on the
original correlation matrix. In the population, the correlations
between factors and factor scores are:

FD = diag(®ATY, "' A®)"? (8)

In the above, @ is a m X m matrix of factor intercorrelations,
where m is the number of factors (5 X 5 for the MASC). In the
case of a bifactor model, this matrix always will have 1s on the
diagonal and zeros elsewhere. The A term is a k X m matrix of
standardized factor loadings where & is the number of items (39 by
5 for the MASC). > is a k X k matrix containing the “reproduced”
or model implied, correlation matrix, found by >, = A®A’' +
5, where {5 is a 39 by 39 matrix with unique variances on the
diagonal, zeros elsewhere.

When calculated, the above index provides the correlation of
factor scores with the factors. Possible values range from O to 1,
with values closer to 1 indicating better determinacy. Gorsuch
(1983, p. 260) has recommended that factors score estimates only
should be considered in research if their determinacy values are
greater than .90. For the general and group factors (PS, HA, SA,
and SP), factor determinacy values were estimated to be: .99, .86,
.92, .95, and .80, respectively. These values imply that only factor
scores from the general factor, HA, and SA factors are trustworthy.

Note that some analysts also report the square of these values,
which indicates the percent of variance in factor scores explained
by factor score estimates. In the present case, these values are .99,
.74, .85, .90, and .64, respectively. Another valuable and easy to
derive index is the minimum possible correlation between two sets
of competing factor scores, 2p2 — 1, which are .98, 48, .71, .80,
and .28, respectively. These values tell one just how different two
sets of equally valid factor scores could be (Guttman, 1955;
Mulaik, 1976; Steiger & Schonemann, 1978). Gorsuch (1983, p.
260) has recommended that factor scores only should be consid-
ered in research if their minimum possible correlation values are
greater than .70. To some degree, this value ensures that the
correlation of F1 and F2 with X, where F1 and F2 are two
competing sets of factor scores and X is a criterion, at least, are in
the same direction. The general factor, HA, and SA thus would be
considered acceptable.

7 Note that unit-weighted summed scores are, in a sense, unrefined factor
score estimates (Grice, 2001).
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Elements of factor determinacy are relevant to understanding
factor score estimates as reflections of factor scores. When mea-
sures are used in SEM, however, estimated factor scores are not
needed because the disattenuated correlation between latent vari-
ables is obtained directly. What is important in SEM, is how well
the latent variable is represented by a particular set of items.
Although certain topics, such as the need to specify at least three
items to identify an orthogonal factor in SEM, are well recognized,
the topic of measurement model quality of the latent variable
seldom is considered carefully. To address this gap, Hancock and
Mueller (2001) and Hancock (2001) introduced the term lconstruct
reliability (or, more recently, construct replicability) in an SEM
context and an index to assess it.®

The term construct reliability, perhaps, is perplexing at first
glance because the notion of reliability (true over observed score
variance or repeatability of observed scores) does not fit easily into
the notion of a psychological construct, which, of course, remains
constant over repeated assessments and different measures. A
simpler, yet still accurate, way of summarizing Hancock and

Mueller's (2001) work is FEOTSCEEENSSEUSE
method of judging how well a latent variable is represented by a
ENEHISSHORNE: (i.c., the quality of its indicators), and, thus,

replicable across studies and ultimately useful in an SEM mea-
surement model.
To understand the approach, consider the following index H:

1
<N ®

This states that for any one factor, H is a function of the sum of
the ratios of the items’ squared loading (proportion of variance
explained by the latent variable) on that factor to 1 minus the
squared loading (proportion of variance unexplained by the latent
variable) on that factor. As the number of items increase, or the
size of the factor loadings increases, H approaches 1; in any case
it will be no smaller than the reliability of the highest loading item
(i.e., no lower than the highest loading squared). Hancock and
Mueller (2001) note, “the quantity represented by H equals the
population squared multiple correlation, P%, from regressing the
construct on its indicators, that is, the proportion of variability in
the construct explainable by its own indicator variables” (p. 202).
“Construct” refers to a latent variable.

In contrast to omegaH and omegaHS values, which provide the
correlation between a factor and a unit-weighted composite, H
values provide the correlation between a factor and an optimally
weighted item composite.” As such, this type of reliability index is
more appropriate for evaluating the feasibility of specifying a
measurement model in an SEM framework using a particular set of
items. When H is low, the latent variable is not well defined by the
indicators and, thus, is expected to change across studies, whereas
when H is high, the latent variable is well defined by its indicators,
which, in turn, will have more stability across studies.

For the MASC data, H = .99, .52, .81, .70, and .39, for the
general factor and PS, HA, SA, SP, respectively. Hancock and
Mueller (2001) have justified the need to meet a standard criterion
of H = .70, and by this standard, the general factor is represented
perfectly, and the subdomains HA and SA are represented well.
The group factors PS and SP are not specified reliably—either

more or better items are needed. In terms of specifying a measure-
ment model, the H analyses suggest that only HA and SA should
be included as group factors in addition to the general factor. Of
course, such a model would change the H value of the general
factor (likely trivially). The critical recognition is that with low H,
we cannot put much trust in the estimated path coefficients be-
tween that low H latent variable and other latent variables because
the loadings are too few or too low to reliably specify the latent
variable.

Explained Common Variance

The above indices consider the sources of common variance
affecting the reliable variance of total and subscale scores, the
accuracy of estimated factor scores, and the appropriateness of
using a set of indicators to represent a latent variable in an SEM
context. We now consider a related, but distinct issue; namely,
given a bifactor structure, and a reasonably strong general factor,
how should the data be represented as a measurement model in an
SEM—as a unidimensional measurement model or as a much
more complicated, cumbersome bifactor measurement model?

The answer to this question is not always as straightforward as
one might hope; simply because the data are more statistically
consistent with a bifactor structure, for example, does not neces-
sarily require that all the variables must be specified in a measure-
ment model or that the more complex bifactor model even is
necessary. It is relatively easy to find examples where authors have
found that a multidimensional model fit better, yet concluded that
a unidimensional measurement model likely would be adequate
(Ackerman, Donnellan, & Robins, 2012; Immekus & Imbrie,
2008; Reichenheim, Moraes, Oliveira, & Lobato, 2011; Reise,
Bonifay et al., 2013; Reise et al., 2007; Yang & Jones, 2008).

Many researchers appear to assume that this “unidimensional”
versus “‘multidimensional” specification issue easily can be re-
solved through statistical indices of fit—if a unidimensional model
fits, use it; if not, do not use it. The field of psychometrics has long
dismissed such simple conceptualizations of the dimensionality of
psychological data, however, and the value of statistical tests of
unidimensionality (e.g., Bentler, 2009; Ten Berge & Socan, 2004).
Bentler (2009) makes this clear, “a 1-factor model hardly ever
describes real data with a reasonable large p” (p. 141), where p
refers to number of items.

Contemporary psychometric research in dimensionality, espe-
cially in the field of item response theory (IRT), by and large is
based on evaluations of the degree of unidimensionality or multi-
dimensionality (Reise, Moore et al., 2013). The popular DETECT
statistic (Zhang & Stout, 1999), for example, has been suggested as
a tool for deciding whether item response data are “unidimensional
enough” or “essentially unidimensional” for the application of
unidimensional IRT models. Here, we suggest an alternative index,

8 Factor determinacy and construct reliability have quite different intel-
lectual histories. They do, however, represent two approaches to the same
psychometric issue. Moreover, when the data are unidimensional, factor
determinacy squared and construct reliability are equivalent. In the case of
a bifactor model, different results may occur. We do not advance argu-
ments for one over the other, however.

? And if the H value is low, then using unit-weighted item scores (i.e.,
not optimally weighted scores) to reflect the underlying latent variable can
only be worse.
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named explained common variance (ECV; Sijtsma, 2009; Ten
Berge & Socan, 2004), which also can be used to judge the
essential unidimensionality of the common variance in an item set.
We are not interested in the fitting of IRT models here, but rather
in deciding whether to treat the multidimensional data with a
bifactor structure as essentially unidimensional in an SEM mea-
surement model.

Prior to presenting the details of ECV, we caution that it is easy
to confuse omegaH as providing an answer to the dimensionality
issue, or as an indicator of general factor strength, but it does not
provide either. OmegaH informs on the percent of variance in a
unit-weighted composite that can be attributable to a general
factor. OmegaH increases as the number of items increases (as-
suming they are all related to the general factor). If OmegaH is
high, we can regard unit-weighted total scores to be “essentially
unidimensional” in the sense that their reliable variance is influ-
enced primarily by a single source. That is not the “dimensional-
ity” of the data, however. We need to know the dimensionality of
the data, in particular, the relative strength of the general factor,
because it is the critical variable in determining whether item
parameters, in both IRT and SEM, can be estimated with minimum
bias.

If data are bifactor, and thus multidimensional by definition,
then researchers need to consider the relative strength of those
factors. In this regard, the standardized loading matrix from a
bifactor model provides a very simple and elegant way to assess
relative dimensional strength. A straightforward and cleaner mea-
sure of degree of essential unidimensionality is the ECV (Reise,
Scheines et al., 2013; Reise et al., 2010; Sijtsma, 2008; Ten Berge
& Socan, 2004). ECV indexes variance specific to a general factor
by taking the ratio of variance explained by a general factor and
dividing it by the variance explained by a general and group
factors where factors are assumed to be uncorrelated. The ex-
plained common variance easily is computed as:

ECV
_ (ZNow)
(E )\%}EN) + (E )\zGrpl) + (2 )\zGrp2) + (E )\érp:i) + (E )\zGrp4)
(10)
For the MASC, ECV is:
20.50

ECV

= = .80
20.50 +.93 +2.33 + 1.45 + .56

The computed explained common variance is .80, meaning that
the general factor explains 80% of the common variance extracted
with 20% of the common variance spread across groups factors.

As Reise (2012) noted, higher ECV values indicate a strong
general factor, which may guide in the decision to fit a unidimen-
sional model even to data that are multidimensional. Stated dif-
ferently, when ECV is high, the factor loadings estimated in a
unidimensional model may approximate well (i.e., be unbiased)
the factor loadings on the general factor if a bifactor model were
fit. The use of ECV in practice, however, is not simple because its
relation with the parameter bias that results from model misspeci-
fication, is moderated by other factors, one of which, percentage of
uncontaminated correlations, is detailed in the section following.

Finally, ECV can be computed at the item level to identify the
percent of item common variance attributable to a general dimen-
sion (called I-ECV; Stucky & Edelen, 2014; Stucky, Thissen, &
Edelen, 2013). These authors suggest that I-ECV can be used to
select items to create a more unidimensional measure. Specifically,
they recommend selecting items with I-ECV values above .80 or
.85. Using the .85 criterion, 56.41% of MASC items had I-ECV
values greater than or equal to .85, with values as high as .99
(items 18 “shaking,” 38 “sweating,” and 14 “look stupid”), 10.26%
in the range of .80-.84, and the remaining values as low as .14
(item 2 “permission”) and .01 (item 11 “follow others”). Almost
all the PS and SP items have relatively high I-ECV values, again
suggesting that these items are more pure anxiety markers and
contribute little to the measurement of their respective group
factors (see Table 2). On the other hand, HA and SA items tend to
have relatively lower I-ECV values. These findings are consistent
with the previous analyses and suggest that group factors HA and
SA may have some real meaning, whereas PS and SP have little.
Finally, and most interesting, some items such as item 36 (“check
safety”) are strong markers of both the general (.60) and group
factors (.50), and with corresponding [-ECV values around .50.

Parameter Bias and Percent
Uncontaminated Correlations

When researchers are concerned whether their bifactor data are
“unidimensional enough” for a unidimensional IRT model or when
specifying a unidimensional model in SEM, the ECV index is a
valuable tool. Research has shown, however, that ECV needs to be
considered within the context of the overall data structure. More
specifically, if researchers are concerned about the possible biasing
effects of forcing multidimensional data into a unidimensional
structure, PUC, used in conjunction with ECV, can provide im-
portant information. Reise, Scheines et al. (2013) and Bonifay et
al. (2015) demonstrated that parameter bias is directly related to
ECV, which, in turn, is moderated by the percent of uncontami-
nated correlations (PUC).

To understand this, one must recognize that forcing multidimen-
sional data, MASC data, for example, into a unidimensional mea-
surement model is a form of model misspecification that can result
in biased parameter estimates, such as factor loadings that are too
high. Bias in factor loading estimates, in turn, can result in struc-
tural parameter bias. The PUC, used in conjunction with the ECV,
can provide information on the conditions under which this bias is
more or less acute.

To understand PUC, and the role it plays in influencing param-
eter bias, consider the MASC data where there are (39 X 38)/2 =
741 unique correlations. Within each group factor, item correla-
tions are contaminated by variance attributed to both the general
and group factor resulting in [(12 X 11)/2 + 3(9 X 8)/2)] = 174
contaminated (by multidimensionality) correlations. The correla-
tions between items from different group factors reflect general
factor variance only, and there are 741-174 = 567 of those
uncontaminated (by multidimensionality) correlations. Thus, the
PUC is 567/741 = .77. What that means, in an applied sense, is
that the overwhelming majority of 741 correlations inform directly
on the general factor, which is the target trait the instrument was
designed to assess.
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Reise, Scheines et al. (2013) and Bonifay, Reise, Scheines, and
Meijer (2015) showed that as PUC increases, the magnitude of the
ECV value becomes less and less important in determining the
potential for bias when a unidimensional model is fit to multidi-
mensional data with bifactor structure. The technical reasons for
this are complicated, but the simple explanation is that as PUC
increases, the general trait in the bifactor model becomes more and
more similar to the single trait estimated in a unidimensional
model, especially when ECV is high. By definition, PUC becomes
large when there are many items and many small group factors.
The smaller the group factors, the more correlations there are that
are influenced by only a single latent variable.

To demonstrate the use of ECV and PUC, consider the MASC,
with values of .80 and .77, respectively, on these indices. Under
such conditions, we expect very little difference in the factor
loadings between a unidimensional model and the general factor in
a bifactor model. To illustrate, we used the reproduced correlation
matrix from the MASC described previously and fit both unidi-
mensional and bifactor models. We then computed the relative
parameter bias as the difference between an item’s loading in the
unidimensional solution and its general factor loading in the bi-
factor (i.e., the truer model), divided by the general factor loading
in the bifactor. We found that the average relative bias across items
was 2%. According to Muthén, Kaplan, and Hollis (1987), param-
eter bias less than 10-15% is acceptable and poses no serious
concern.

As a consequence, a unidimensional measurement model in the
context of SEM well may suffice for the MASC, even though such
a model would not provide a good statistical fit to the data.
Another, and, perhaps, far easier approach would be to form
parcels by subdomain and then include only those four parcels in
the SEM measurement model to represent anxiety (Little,
Rhemtulla, Gibson, & Schoemann, 2013). In theory, if data are
perfectly bifactor, then forming parcels based on content domains
should yield a unidimensional set of indicators. Explorations of
forming parcels from real data, which cannot be expected to fit
perfectly, is a much needed research endeavor (Bandalos, 2002;
Bandalos & Finney, 2001; Coffman & MacCallum, 2005; Little,
Cunningham, Shahar, & Widaman, 2002; Sterba, 2011; Sterba &
MacCallum, 2010).

Discussion

Bifactor measurement models—latent structural models that
propose a single general factor as well as multiple uncorrelated
group factors—are commonly being applied to personality and
psychopathology measures (Reise, 2012). Most bifactor model
applications, however, are limited to demonstrations of “superior
fit” and partitioning sources of item response variance. In the
present article, we have shown how bifactor modeling can be used
to more thoroughly evaluate an instrument’s psychometric prop-
erties and with a running example using solely the standardized
loading matrix from the MASC (Osman et al., 2009) study,'® how
statistics derived from bifactor models can aid in practical decision
making.

The indices we presented roughly can be divided into two types:
those that inform on (a) properties of total and subscale scores
derived from an instrument and (b) the use of a measure in an SEM
framework. Following, we briefly review the definition of each

index and the practical issues they each address (with comments
on the MASC results).

MASC Evaluation Through a Bifactor Lens

Practical issue: Judging the reliability of unit-weighted com-
posite scores.

Coefficient alpha. Alpha is an estimate of the reliability (true
score variance over observed score variance) of unit-weighted test
scores. If data are unidimensional, with no correlated residuals,
alpha can be a lower bound estimate of reliability. Alpha assumes
essential tau equivalence (equal factor loadings) and depends on
the average item intercorrelation and the number of items (as these
values increase alpha also increases). In the MASC, alpha was
very high for total scores, as well as for the four subscale scores:
.99 for Anxiety, .95 for PS, .88 for HA, .96 for SA, and .93 for SP.
This high internal consistency is partly attributable to many con-
tent redundant items within group factors, which inflate correla-
tions.

To what degree the correlation between content-similar items is
due to a common trait or traits(s) versus an artifact of just asking
the question more than once is a complicated topic, which would
require a separate paper. For our present purposes, we suggest
checking this by estimating a series of models, each time elimi-
nating one or two items from sets that appear overly content
redundant. If the loadings truly reflect the relation with a common
trait, they should be invariant as to other items in the model. If the
loadings change substantially when items are removed, this can be
taken as a sign that the latent variable is overly influenced by sets
of content redundant items. The logic underlying this method is
well described by Kievit et al (2011, p. 71). “. . . in correctly
specified reflective models, latent variables should be referentially
stable. That is to say that the addition or deletion of an indicator
may alter the accuracy by which the attribute is measured but not
the nature of the attribute (latent variable) itself. With regard to the
measurement of g, Spearman called this characteristic indifference
of the indicators (Spearman, as cited in Jensen, 1998).”

Coefficient omega. This is a factor analytic model-based es-
timate of the reliability (true score variance over observed score
variance) of unit-weighted test scores. Omega is the model-based
analogue of coefficient alpha, except that it is appropriate for
congeneric tests (varying factor loadings). Its value is influenced
by all modeled sources of common variance. Like any internal
consistency estimate, it is a negatively biased estimate of reliability
because it includes item specific variance as error (Bentler, 2009).
In the MASC, omega was very high for both total and subscale
scores: .98, .96, .90, .97, and .93, respectively. The same caveat
about item content redundancy expressed for alpha, applies equally
to interpreting omega.

Coefficient omega hierarchical (omegaH). This is the per-
cent of total score variance attributable to a single general factor.
The square root provides the correlation of raw scores with the
general factor. For the MASC, omegaH was .93; when compared
to omega of .98, it is clear that the overwhelming majority of
reliable variance in the total scores is attributable to the general
factor. We concluded that raw scores essentially are univocal

'9In the Appendix we provide an annotated example analysis using the
R (R Development Core Team, 2014) psych library 1.4.5 (Revelle, 2014).
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indicators of the general factor and only trivially affected by
multidimensionality caused by group factors.

Coefficient omega hierarchical subscale (omegaHS). This is
the percent of subscale score variance attributable to a group
factor, after removing the reliable variance due to the general
factor. The square root provides the correlation of raw unit-
weighted subscale scores with the group factor. For the MASC,
omegaHS values were low for the four subscales, especially when
compared to their corresponding omega values. The majority of
reliable variance in subscale scores was attributable to the general
factor, which precludes meaningful interpretation of MASC sub-
scale scores as unambiguous indicators of a group factor. For the
MASC, the only way to increase omegaH would be to find items
that were “pure” indicators of the group factor and had low
relations with the general factor—a task, in fact, that may not be
possible.

Practical issue: Using a set of items to compute factor scores
or identifying a latent variable in an SEM context.

Factor determinacy. For any factor model, there are an infi-
nite set of equally valid factor score estimates. When factor deter-
minacy—the correlation between factor score estimates and fac-
tors—is high, this is not a problem, because any competing set of
factor scores will yield nearly identical results. When factor de-
terminacy is low, one cannot be confident in the factor score
estimates (or unit-weighted scores), because competing estimates
may yield completely different results. In the MASC, the general
factor and the HA and SA group factors emerged as acceptably
determinate, whereas the PS and SP group factors displayed low
determinacy. In general, seldom would we expect determinacy
problems with general factors defined by many items, but we are
more cautious in our expectations for group factors.

Construct reliability (or construct replicability). This is the
quality of the measurement model defined by a particular set of
items or how well the items reflect or account for the variance of
the latent variable. When the data are unidimensional, FD? and H
are equivalent, but when data are bifactor, the values may differ
and lead to different conclusions. If a set of items has low construct
reliability, which will occur when there are few items with rela-
tively low loadings, the latent variable may be identified but not
reliably specified. In such cases, we would not expect SEM results
to replicate well. When construct reliability is high, our expecta-
tions are just the opposite.

For the MASC data, the H values were .99, .52, .81, .70, and .39,
for the general factor and PS, HA, SA, SP, respectively. Because
H values are interpretable as a type of “reliability” coefficient, we
can conclude that HA and SA are “acceptable” using the .70
benchmark. The H values for PS and SP do not meet this criterion,
however, and these results would lead us be highly suspect of any
structural equation model that included PS or SP as group factors.

Note, however, the critical role of high loadings in determining
H values. In the MASC, several items had loadings greater than .90
on the general factor—thus, causing high construct reliability. As
noted above in the Alpha and Omega sections, if those high
loadings merely reflect the effects of shared variance caused by the
repeated item content, rather than each item’s relation with a single
common latent variable, then that construct reliability is illusory
(or, the latent variable reflects nothing of substance, but the items
are indicating it well).

The H values for all four group factors (.52, .81, .70, and .39) are
much higher relative to corresponding omegaHS values (.08, .43,
.17, .08), suggesting that unit-weighted subscale scores are poor,
but using these items to specify a group factor may be feasible, at
least in the case of the second and third group factors, respectively.
These results are not at all contradictory. The values of omegaHS,
are strongly affected by the absolute and relative sizes of item
loadings on the general and group factors, and when items load
strongly on the general factor, omegaHS values will be low. H
values are affected only by the items’ loadings on the factor of
interest. Finally, we observed that for the MASC, H values for
subdomain (group or residualized) factors are expected to be much
lower than their corresponding values in, say, a four correlated
factors model (not residualized). This phenomenon is completely
analogous to comparing omega with omegaHS values—the latter
are inevitably smaller than the former due to the residualized
nature of group factors.

Practical issue: Deciding whether multidimensional (bifac-
tor) data are ‘“unidimensional enough” to specify a unidimen-
sional measurement model in an SEM context.

Explained common variance (ECV). ECV is the percent of
common variance explained by the general factor. This is a degree
of unidimensionality index and is directly related to the relative
strength of the general factor. It is useful, in conjunction with PUC,
in deciding whether the data are essentially unidimensional, such
that fitting a unidimensional latent variable model will not lead to
seriously biased parameter estimates. The ECV for the MASC was
.80, indicating a strong general factor. ECV should not be confused
with omegaH (see above definition); ECV does not necessarily
increase as items are added to a measure, but omegaH does,
assuming items are related to the general factor.

Item explained common variance (I-ECV). For a single item,
[-ECV is the percent of common variance (communality) due to
the general factor. It is suggested as a useful index for scale
construction and refinement (Stucky & Edelen, 2014). Items with
high I-ECV are good candidates for inclusion on a measure if the
goal is to create a unidimensional (one common factor) item set.
For the MASC, many items had very large I-ECV values suggest-
ing they are relatively pure markers of anxiety and not their
corresponding group factor. Many of the items in the PS and SP
group factors match this description. On the other hand, items from
HA and SA group factors also loaded highly on the general factor,
but they also tended to have substantial loadings on their corre-
sponding group factor.

Percent uncontaminated correlations (PUC). PUC is the
number of unique correlations in a correlation matrix that are
influenced by a single factor divided by the total number of
unique correlations. The higher the PUC, the more the matrix is
saturated with information relevant to estimating the parameters
of a single factor and the less likely the parameter estimates in
a unidimensional model will be biased. In the MASC, PUC was
.77, and when combined with a strong general factor (ECV =
.80), one reasonably can conclude that the common variance is
essentially unidimensional. When we compared the parameter
estimates from the general factor in a bifactor model with those
from a unidimensional model, the relative difference was only
2%. Whereas a 39-item unidimensional measurement model
may be acceptable, it probably is more parsimonious to form
four parcels based on the item content subdomains and simply
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use those four continuous indicators to identify the single latent
variable. Without detailing the mathematics of parcels (but see
Sterba, 2011), collapsing sets of items (e.g., 39) that are content
homogeneous creates a new, much smaller subset of observed
variables (in this case 4), where the common variance among
them should reflect only the general factor. Parcels also are
more likely to be reasonably considered continuous and nor-
mally distributed. In other words, parceling can eliminate the
multidimensionality from the indicators and make the data more
amenable to SEM analyses using maximum likelihood methods.

Conclusion

We presented indices that one can derive from the results of a
bifactor model; each provides information about various aspects of
a measure’s psychometric properties. We intentionally have side-
stepped the theoretical debates about the virtues of the bifactor
model versus competing models; moreover, we have not offered
technical advice regarding estimation methods or firm benchmarks
for judging model fit. Those issues are well beyond the present
scope.

We believe that this set of indices offers tremendous potential to
assist scale developers and evaluators, as well as those who use the
scales in research and clinical practice. We thank a reviewer for
helping us clarify our recommendation that these indices become
routinely reported in research articles and in test technical manuals
so that researchers and clinicians have information available to
adequately judge whether a measure has acceptable true score
variance. Further, we argue that these indices will have high
generalizability, given that any set of items (or subtests such as in
tests of intelligence and achievement) consistent with a second-
order or correlated factors model conceivably could be modeled as
bifactor. Finally, we also believe in their potential to inform
construct development and understanding, even for researchers
who do not entirely endorse the bifactor model as a valid repre-
sentation of the structure of psychological traits.
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Appendix
Working With Real Data

For our demonstrations, we used only the standardized bifactor
loadings from a published article. To show how researchers can
compute the indices presented herein on their own data, or when
working from a reproduced correlation matrix derived from pub-
lished research, we illustrate the use of readily available software
R 3.1.1 (R Development Core Team, 2014) psych library version
1.3.2 (Revelle, 2014). To compute the various statistical indices in
this example, first, the correlation matrix was reproduced using
simulated standardized factor loadings. Fifteen items were simu-
lated to have standardized factor loadings of .6 on the general
factor. Five items were specified to have strong (standardized)
factor loadings on the first group factor (Ns = .70), five with
moderate factor loadings (Ns = .50) on the second group factor,
and five with weak loadings (N's = .30) on the third group factor.

From this loading matrix, the model reproduced correlation

matrix was computed using the following transformation: R =

AON + s where \ is a matrix of standardized factor loadings (15 X
4), ¢ is a matrix of the intercorrelations among factors (4 X 4),
with unities on the diagonal and zeroes in the off-diagonals, and s
is a 15 X 15 matrix with unique variances on the diagonal, zeros
elsewhere. The resulting product is the 15 X 15 reproduced cor-

relation matrix (I?), which, for present purposes, is treated as a
proxy for the actual data analyzed. After obtaining the model
reproduced correlation matrix, computing the various indices eas-
ily can be accomplished.

Using the omega (or omegaSEM) function built into the psych
package (Revelle, 2014), the user need only specify two basic
elements, a correlation matrix and the number of group factors.
The command is: omega(m, nfactors = 3) where m is the corre-
lation matrix and nfactors is the number of group factors. This
requires the user to name the correlation matrix, in this case, model
(abbreviated “m”), and specify the number of group factors to be

(Appendix continues)
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> omega(model,nfactore=3) 4—| Omega command, model isthe correlation matrix, nfactors is number of group factors.

0.76 4———| Coefficient omega hierarchical (wy) — reliable variance attributed to a single

Omega

Call: amega(m = model, nfactors = 3)

Alpha: 0.92 Standardized coefficient alpha (&) for total scale score
G.6: 0.94

Cmega Hierarchical:

Omega H asymptotic: 0.8 general factor

Omega Total 0.95

Schmid Leiman Factor loadings greater than 0.2

common variance (I-ECV)

g F1* F2* F3* h2 u2_ p2 « -
Vi 0.6 0.7 0.83,15 |
vz 0.6 0.7 0.85 0. 0.42 Error variance (1-h%)
V3 0.6 0.7 0.85 0.15 O™
v 0.6 0.7 0.85 0.15 0.42
VS 0.6 0.7 0.85 0.15 0.42
V6 0.6 0.5 0.61 0.39 0.59
V7?7 0.6 0.5 0.61 0.39 0.59
V8 0.6 0.5 0.61 0.39 0.59
Ve 0.6 0.5 0.61 0.39 0.59
V10 0.6 0.5 0.61 0.39 0.59
V11l 0.6 0.3 0.45 0.55 0.80
V12 0.6 0.3 0.45 0.55 0.80
V13 0.6 0.3 0.45 0.55 0.80
V14 0.6 0.3 0.45 0.55 0.80
V15 0.6 0.3 0.45 0.55 0.80

With eigenvalues of:

g F1* F2» F3»
5.40 2.45 1.25 0.45
general/max 2.2 max/min = 5.44
mean percent general = 0.6 with sd =
The degrees of freedom are 63 and the fit is 0

The root mean square of the residuals is 0

0.16 and cv of 0.27
Explained Common Variance of the general factor =

0.57 « [ ined c variance (ECV)

The df corrected root mean square of the residuals is 0

Compare this with the adequacy of just a general factor and no group factors

The degrees of freedom for just the general factor are 90

The root mean square of the residuals is 0.17

and the fit is 4.78

The df corrected root mean square of the residuals is 0.19

Measures of factor score adequacy

Factor determinacy statistics |

Correlation of scores with factors
Multiple R square of scores with factors

g Fix» F2v

0.88 0.89 0.76 0.52 ‘/’-
0.78 0.80 0.58 0.27 n

— /IZl

Minimum correlation of factor score estimates 0.56 0.60 0.16 -0.45

Total, General and Subset omega for each subset

Cmega total for total scores and subscales

Figure Al.

analyzed. That said, it should be noted that there are a variety of
other options available in terms of model specification, such as
factor methods (e.g., minimum residuals, maximum likelihood),
type of correlation matrix being used (e.g., polychoric/tetrachoric,
Pearson), number of observations for computing goodness of fit
statistics, as well as many others. Annotated results are shown in

g Flx F2* F3*
0.95 0.97 0.89 0.80 4—j
Omega general for total scores and subscales 0.76 0.41 0.52 0.64
Omega group for total scores and subscales 0.1

Coefficient omega (w) for
total scale and subscale scores

Coefficient omega hierarchical
subscale (wy;) for subscale scores

Annotated R output for real data example.

Figure Al. The only index not available on the annotated output is
H, which easily can be computed by hand because H is a function
of the ratio of the items’ squared loading (proportion of variance
explained by the latent variable) on a factor to 1 minus the squared
loading (proportion of variance unexplained by the latent variable)
on that factor (see Equation 9).
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