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3.1 Background
A structural equation model (SEM) is a broad class of statistical models (see Figure 3.1)
that consists of two parts: the structural model and the latent variable model. The struc-
tural model consists of the regression-like relationships among the variables (i.e., the path
analysis from Chapter 2). The latent variable model (LVM) forms the latent variables
(LVs) used in the structural model. When a LVM is analyzed without a structural model, it
is sometimes called a confirmatory factor analysis (CFA). If there was not a hypothesized
structure for the latent variable model, then it would be an exploratory factor analysis
(EFA). The majority of this book is focused on confirmatory LVMs, although in Section 3.4 I
demonstrate fitting a full SEM. Beaujean (2013) demonstrates how to conduct an EFA in R.
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Figure 3.1 Example of data analysis methods subsumed by a structural equation model.
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Figure 3.2 Reflective and formative latent variable path models.
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3.2 Latent Variable Models
There are two types of latent variables: reflective and formative. Reflective LVs are thought
to cause other variables to covary, whereas formative LVs are thought to be the result of vari-
ables’ covariation (similar to a regression model). Reflective and formative LVs are shown in
Figure 3.2a and Figure 3.2b, respectively. I focus on reflective LVs in this book, although I
give some further reading on formative LVs in Section 3.8, and Exercise 3.3 requires the use
of a formative LV.

The purpose of a (reflective) LVM is to understand the underlying structure that pro-
duced relationships among multiple manifest variables (i.e., covariance matrix). The manifest
variables (MVs) that are directly influenced by the LV are the indicator variables. The
proposed causal agents in these underling structures are LVs. I first introduced latent vari-
ables in Chapter 2 when discussing regression, as the error term is a latent variable: it is
unobserved and influences a manifest variable (i.e., the outcome/endogenous variable); it is
measured di�erently than typical LVs, though.

The idea behind a LVM is that there are a small number of LVs within a given domain
(e.g., personality, self-e�cacy, religiosity) that influence each of its indicator variables and,
hence, produce the observed covariances. Thus the variation (or covariation if there is more
than one) in the LVs causes (loosely defined) covariation in the indicators; conversely, covaria-
tion in the indicator variables is due to their dependence on one or more LVs. Latent variable
modeling, then, is the method used to identify or confirm the number of the LVs that pro-
duce the observed covariation in the indicator variables as well as understand the nature of
those LVs (e.g., what they predict, what variables predict them).

In path models, LVs are represented using ellipses. Figure 3.3 contains an example of a
one-factor LVM using subtests from the Wechsler Intelligence Scale for Children-Fourth Edi-
tion (WISC-IV; Wechsler, 2003). It has one LV, g, and five MVs, each of which is an indica-
tor variable.

One measure of the influence a LV has on MVs is the factor loading. These are akin to
regression/path coe�cients. Some scholars advocate using the term pattern coe�cient in-
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is more parsimonious than the measurement model because it attempts to reproduce 
the relationships among the latent variables with one less freely estimated parameter. 
Because of the overidentified nature of the structural portion of this model, its goodness 
of fit may be poorer than that of the measurement model. As illustrated by a tracing rule 
presented later in this chapter (e.g., Eq. 3.16), the structural portion of this model will 
result in poor fit if the product of the Factor X → Factor Z path and Factor Z → Factor Y 
path does not closely approximate the correlation between Factors X and Y estimated in 
the measurement model. Indeed, the indirect effects structural model in Figure 3.2B will 
be poor- fitting because the product of the X → Z and Z → Y direct effects [(.40)(.50) = 
.20] does not approximate the correlation between Factors X and Y (.60; see Figure 3.2A).

The purpose of this discussion is to illustrate that goodness of model fit is deter-
mined by how adequately both the measurement and structural portions of a model are 
specified. A key aspect of CFA evaluation is the ability of the parameters from the mea-
surement model (e.g., factor loadings and factor correlations) to reproduce the observed 
relationships among the indicators. If the CFA model is misspecified (e.g., failure to 
specify the correct number of factors, pattern of factor loadings), a poor- fitting solution 
will result. However, poor fit may also arise from a misspecified structural model which, 
like the model depicted in Figure 3.2B, often possesses fewer freely estimated param-
eters than its corresponding measurement model. Because there are various potential 
sources of poor fit in CFA models involving multiple indicators, the researcher should 
establish a viable measurement model prior to pursuing a structural solution. If test-

FIGURE 3.2. Path diagrams of measurement and structural models.

Model A: Measurement Model

Model B: Structural Model



Conceitos 
práticos

§ EFA/ CFA Cargas fatoriais e comunalidade
§ Pattern coefficients (corr parciais)

§ Structural coefficients (corr zero order)

§ Comunalidade e unicidade (R2)

§ Identificação
§ Gl = info – parâmetros

§ Just-, under e over identified

§ Número de indicadores

§ Métrica da variável latente
§ Padronizada (0/1), variável marcadora e 

effect coding

Conceitos importantes



EFA vs CFA



38 CONFIRMATORY FACTOR ANALYSIS FOR APPLIED RESEARCH 

FIGURE 3.1. Path diagrams of confirmatory and exploratory factor models.

Model A: Confirmatory Factor Model (all measurement error is random)

Model B: Exploratory Factor Model (oblique rotation)

Model C: Confirmatory Factor Model (with a correlated measurement error)
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TABLE 3.1. Factor Loading Matrices from EFA 
and CFA of Adolescent Antisocial Behaviors

A. CFA (factor correlation = .6224)
Factor

Property Crimes Violent Crimes Communality

Y1 .7996 .0000 .64
Y2 .6451 .0000 .42
Y3 .5699 .0000 .32
Y4 .4753 .0000 .23
Y5 .0000 .7315 .53
Y6 .0000 .5891 .35
Y7 .0000 .7446 .55
Y8 .0000 .5803 .34

B. EFA (oblique rotation, factor correlation = .5722)
Factor

Property Crimes Violent Crimes Communality

Y1 .9187 –.0958 .75
Y2 .5422 .1045 .37
Y3 .5300 .0372 .30
Y4 .4494 .0103 .21
Y5 .0434 .7043 .53
Y6 –.1178 .6999 .41
Y7 .1727 .6106 .52
Y8 .0264 .5756 .35

C. EFA (orthogonal rotation, factor correlation = 0)
Factor

Property Crimes Violent Crimes Communality

Y1 .8493 .1765 .75
Y2 .5509 .2574 .37
Y3 .5185 .1898 .30
Y4 .4331 .1408 .21
Y5 .2587 .6826 .53
Y6 .1032 .6314 .41
Y7 .3535 .6312 .52
Y8 .2028 .5552 .35

Note. N = 1,050. Y1 = shoplifting, Y2 = vandalism, Y3 = theft, 
Y4 = broke into building/vehicle, Y5 = fighting, Y6 = aggravated 
assault, Y7 = hit family/teachers, Y8 = threatened others.
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ple size, number of indicators). The rationale of parallel analysis is that the factor should 
account for more variance than is expected by chance (as opposed to more variance than 
is associated with a given indicator, according to the logic of the Kaiser– Guttman rule). 
Using the 20- item data set, parallel analysis suggests four factors (see Figure 2.3). After 
the eigenvalue for the fourth factor, the eigenvalues from the randomly generated data 
(averages of 50 replications) exceed the eigenvalues of the research data. Although par-
allel analysis frequently performs well, like the scree test it is sometimes associated with 
somewhat arbitrary outcomes (e.g., chance variation in the input correlation matrix may 
result in eigenvalues falling just above or below the parallel analysis criterion). A prac-
tical drawback of the procedure is that it is not available in major statistical software 
packages such as SAS and SPSS, although parallel analysis is an option in the Mplus and 
Stata software programs, and in various shareware programs found on the Internet (e.g., 
O’Connor, 2001). In addition, Hayton, Allen, and Scarpello (2004) have provided syntax 
for conducting parallel analysis in SPSS, although the user must save and summarize the 
eigenvalues generated from random data outside of SPSS.

As noted above, when a factor estimation procedure other than ML is employed, 
eigenvalue- based procedures such as the Kaiser– Guttman rule, the scree test, and par-

FIGURE 2.3. Parallel analysis using eigenvalues from research and random data (average of 50 
replications). Arrow indicates that eigenvalues from random data exceed the eigenvalues from 
research data after the fourth factor.
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FIGURE 2.4. Geometric representations of unrotated, orthogonally rotated, and obliquely 
rotated factor matrices.

A. Unrotated Factor Matrix

Factor

1 2

Y1 .834 –.160
Y2 .813 –.099
Y3 .788 –.088
Y4 .642 .015
Y5 .386 .329
Y6 .333 .593
Y7 .313 .497
Y8 .284 .336

B. Orthogonally Rotated Factor Matrix (Varimax)

Factor

1 2

Y1 .836 .150
Y2 .794 .199
Y3 .767 .201
Y4 .594 .244
Y5 .242 .445
Y6 .098 .673
Y7 .114 .576
Y8 .145 .416

C. Obliquely Rotated Factor Matrix (Promax)

Factor

1 2

Y1 .875 –.062
Y2 .817 .003
Y3 .788 .012
Y4 .588 .106
Y5 .154 .418
Y6 –.059 .704
Y7 –.018 .595
Y8 .055 .413
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stated earlier, unique variance is some combination of specific factor and measurement 
error variance. It is important to note that EFA and CFA do not provide separate esti-
mates of specific variance and error variance.

In addition, Table 2.2 provides selected output from the Mplus program. As would 
be expected, many of the results are identical to those generated by SPSS (e.g., eigenval-
ues, factor loadings). However, Mplus also provides other useful output, including an 
expanded set of goodness- of- fit statistics; standard errors and significance tests for the 
factor loadings (as well as for the residual variances, not shown in Table 2.2); and an 
estimate of factor determinacy (if requested by the user on the OUTPUT line; see Table 
2.2). Each of these additional aspects of the Mplus output is discussed later in this book.

Path diagrams of the one- factor measurement model are provided in Figure 2.1. The 
first diagram presents the solution, using common symbols for the various elements of 

FIGURE 2.1. Path diagram of the one- factor model.
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factor models (and LISREL latent Y variable notation); the second diagram replaces these 
elements with the sample estimates obtained from the EFA presented in Table 2.1. Fol-
lowing the conventions of factor analysis and structural equation modeling (SEM), the 
latent variable (factor) of Depression is depicted by a circle or an oval, whereas the four 
clinical ratings (indicators) are represented by squares or rectangles. The unidirectional 
arrows (→) represent the factor loadings (λ, or lambda), which are the regression slopes 
(direct effects) for predicting the indicators from the factor (η, or eta). These arrows are 
also used to relate the unique variances (ε, or epsilon) to the indicators.4

A fundamental equation of the common factor model is

 yj = λj1η1 + λj2η2 + . . . + λjmηm + εj (2.1)

where yj represents the jth of p indicators (in the case p = 4; O1, O2, O3, O4) obtained 
from a sample of n independent participants (in this case, n = 300); λjm represents the 
factor loading relating variable j to the mth factor η (in the case m = 1; the single factor of 
Depression); and εj represents the variance that is unique to indicator yj and is indepen-
dent of all ηs and all other εs. As will be seen in subsequent chapters, similar notation is 
used to represent some of the equations of CFA. In this simple factor solution entailing 
a single factor (η1) and four indicators, the regression functions depicted in Figure 2.1 
can be summarized by four separate equations:

 O1 = λ11η1 + ε1 (2.2)
 O2 = λ21η1 + ε2

 O3 = λ31η1 + ε3

 O4 = λ41η1 + ε4

This set of equations can be summarized in a single equation that expresses the relation-
ships among observed variables (y), factors (η), and unique variances (ε):

 y = Λyη + ε (2.3)

or in expanded matrix form:

 Σ = ΛyΨΛ′y + Θε (2.4)

where Σ is the p × p symmetric correlation matrix of p indicators; Λy is the p × m matrix 
of factor loadings λ (in this case, a 4 × 1 vector); Ψ is the m × m symmetric correlation 
matrix of the factor correlations (1 × 1); and Θε is the p × p diagonal matrix of unique 
variances ε (p = 4). In accord with matrix algebra, matrices are represented in factor 
analysis and SEM by uppercase Greek letters (e.g., Λ, Ψ, and Θ), and specific elements 
of these matrices are denoted by lowercase Greek letters (e.g., λ, ψ, and ε). With minor 
variations, these fundamental equations can be used to calculate various aspects of the 
sample data from the factor analysis parameter estimates, such as the variances, covari-

EFA
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ances, and means of the input indicators (the latter can be conducted in context of CFA 
with mean and covariance structures; see Chapter 7). For example, the following equa-
tion reproduces the variance in the O1 indicator:

 VAR(O1) = σ11 = λ11
2ψ11 + ε1 (2.5)

= .8282(1) + .315
= 1.00

where ψ11 is the variance of the factor η1, and ε1 is the unique variance of O1. Note that 
both ψ11 and σ11 equal 1.00 because the EFA model is completely standardized; that is, 
when variables are standardized, their variances equal 1.00. Similarly, the model esti-
mate of the covariance (correlation) of O1 and O2 can be obtained from the following 
equation:

 COV(O1, O2) = σ21 = λ11ψ11λ21 (2.6)
= (.828)(1)(.841)
= .696

Because the solution is completely standardized, this covariance is interpreted as the 
factor model estimate of the sample correlation of O1 and O2. In other words, the model- 
implied correlation of the indicators is the product of their completely standardized fac-
tor loadings. Note that the sample correlation of O1 and O2 is .70, which is very close to 
the factor- model- implied correlation of .696. As discussed in further detail in Chapter 
3, the acceptability of factor analysis models is determined in large part by how well the 
parameter estimates of the factor solution (e.g., the factor loadings) are able to reproduce 
the observed relationships among the input variables. The current illustration should 
exemplify the point made earlier that common variance (i.e., variance explained by the 
factors as reflected by factor loadings and communalities) is estimated on the basis of 
the shared variance among the indicators used in the analysis. EFA generates a matrix of 
factor loadings (Λ) that best explain the correlations among the input indicators.

PROCEDURES OF EFA

Although a full description of EFA is beyond the scope of this book, an overview of its 
concepts and procedures is helpful to make later comparisons to CFA. The reader is 
referred to papers by Fabrigar, Wegener, MacCallum, and Strahan (1999); Floyd and 
Widaman (1995); and Preacher and MacCallum (2003) for detailed guidelines on con-
ducting EFA in applied data sets.

As stated earlier, the overriding objective of EFA is to evaluate the dimensional-
ity of a set of multiple indicators (e.g., items from a questionnaire) by uncovering the 
smallest number of interpretable factors needed to explain the correlations among them. 
Whereas the researcher must ultimately specify the number of factors, EFA is an “explor-
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error covariances, if any, in the off- diagonal. Less commonly, some notational systems 
do not use directional arrows in the depiction of error variances in order to avoid this 
potential source of confusion (one notational variation is to symbolize error variances 
with ovals because, like latent variables, measurement errors are not observed).

Factor variances and covariances are notated by phi (φ) and psi (ψ) in latent X 
and latent Y models, respectively. Curved, bidirectional arrows are used to symbolize 
covariances (correlations); in Figures 3.3 and 3.4, curved arrows indicate the covariance 
between the factors (φ21, ψ21) and the error covariance of the X5 and X6 indicators (δ65, 
ε65). When relationships are specified as covariances, the researcher is asserting that 
the variables are related (e.g., ξ1 and ξ2). However, this specification makes no claims 
about the nature of the relationship, due to either the lack of knowledge regarding the 
directionality of the association (e.g., ξ1 → ξ2) or the unavailability to the analysis of 
variables purported to account for this overlap (e.g., ξ1 and ξ2 are related because they 
share a common cause that is not represented by observed measures or latent variables 
in the analysis). Nonetheless, as discussed in Chapter 8, higher- order factor analysis is 
a useful approach for explaining the covariances among factors when a strong theory 
exists in regard to the patterning of the factor interrelationships.

The parameters in Figures 3.3 and 3.4 also possess numerical subscripts to indicate 
the specific elements of the relevant matrices. For example, λx11 (Figure 3.3) indicates 

FIGURE 3.3. Latent X notation for a two- factor CFA model with one error covariance. Factor 
variances, factor means, and indicator intercepts are not depicted in the path diagram.

Name Parameter Matrix Type Description

Lambda-X λx Λx Regression Factor loadings

Theta-delta δ Θ δ Variance–covariance Error variances and covariances

Phi φ Φ Variance–covariance Factor variances and covariances

Tau-X τx Mean vector Indicator intercepts

Kappa κ Mean vector Latent means

Xi (Ksi) ξ Vector Names of exogenous variables
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that the X1 measure loads on the first exogenous factor (ξ1), and λx21 indicates that X2 
also loads on ξ1. This numeric notation assumes that the indicators are ordered X1, 
X2, X3, X4, X5, and X6 in the input variance– covariance matrix. If the input matrix is 
arranged in this fashion, the lambda X matrix (Λx) in Figure 3.3 will be as follows:

ξ1 ξ2 (3.1)
X1 λx11 0
X2 λx21 0
X3 λx31 0
X4 0 λx42
X5 0 λx52
X6 0 λx62

where the first numerical subscript refers to the row of Λx (i.e., the positional order of 
the X indicator), and the second numerical subscript refers to the column of Λx (i.e., the 
positional order of the exogenous factors, ξ). For example, λx52 conveys that the fifth 
indicator in the input matrix (X5) loads on the second latent X variable (ξ2). Thus Λx 
and Λy are full matrices whose dimensions are defined by p rows (number of indicators) 

FIGURE 3.4. Latent Y notation for a two- factor CFA model with one error covariance. Factor 
variances, factor means, and indicator intercepts are not depicted in the path diagram.
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and m columns (number of factors). The zero elements of Λx (e.g., λx12, λx41) indicate 
the absence of cross- loadings (e.g., the relationship between X1 and ξ2 is fixed to zero). 
This is also depicted in Figures 3.3 and 3.4 by the absence of directional arrows between 
certain indicators and factors (e.g., no arrow connecting ξ2 to X1 in Figure 3.3).

A similar system is used for variances and covariances among factors (φ in Figure 
3.3, ψ in Figure 3.4) and indicator errors (δ and ε in Figures 3.3 and 3.4, respectively). 
However, because these aspects of the CFA solution reflect variances and covariances, 
they are represented by m × m symmetric matrices with variances on the diagonal and 
covariances in the off- diagonal. For example, the phi matrix (Φ) in Figure 3.3 will look 
as follows:

ξ1 ξ2 (3.2)
ξ1 φ11
ξ2 φ21 φ22

where φ11 and φ22 are the factor variances, and φ21 is the factor covariance. Similarly, the 
theta- delta matrix (Θδ) in Figure 3.3 is the following p × p symmetric matrix:

X1 X2 X3 X4 X5 X6 (3.3)
X1 δ11

X2 0 δ22

X3 0 0 δ33

X4 0 0 0 δ44

X5 0 0 0 0 δ55

X6 0 0 0 0 δ65 δ66

where δ11 through δ66 are the indicator errors, and δ65 is the covariance of the mea-
surement errors of indicators X5 and X6. For notational ease, the diagonal elements are 
indexed by single digits in Figures 3.3 and 3.4 (e.g., δ6 is the same as δ66). The zero ele-
ments of Θδ (e.g., δ21) indicate the absence of error covariances (i.e., these relationships 
are fixed to zero).

In CFA with mean structures (see Chapter 7), indicator intercepts are symbolized 
by tau (τ), and latent exogenous and endogenous means are symbolized by kappa (κ) and 
alpha (α), respectively. Because the focus has been on CFA, only parameters germane 
to measurement models have been discussed thus far. LISREL notation also applies 
to structural component of models that entail directional relationships among exoge-
nous and endogenous variables. For instance, gamma (γ, matrix: Γ) denotes regressions 
between latent X and latent Y variables, and beta (β, matrix: Β) symbolizes directional 
effects among endogenous variables. Most of the CFA illustrations provided in this book 
do not require gamma or beta parameters. Exceptions include CFA with covariates (e.g., 
MIMIC models, Chapter 7), where the measurement model is regressed on observed 
background measures (e.g., a dummy code indicating male versus female); higher- order 
CFA (Chapter 8); and models with formative indicators (Chapter 8).
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error covariances, if any, in the off- diagonal. Less commonly, some notational systems 
do not use directional arrows in the depiction of error variances in order to avoid this 
potential source of confusion (one notational variation is to symbolize error variances 
with ovals because, like latent variables, measurement errors are not observed).

Factor variances and covariances are notated by phi (φ) and psi (ψ) in latent X 
and latent Y models, respectively. Curved, bidirectional arrows are used to symbolize 
covariances (correlations); in Figures 3.3 and 3.4, curved arrows indicate the covariance 
between the factors (φ21, ψ21) and the error covariance of the X5 and X6 indicators (δ65, 
ε65). When relationships are specified as covariances, the researcher is asserting that 
the variables are related (e.g., ξ1 and ξ2). However, this specification makes no claims 
about the nature of the relationship, due to either the lack of knowledge regarding the 
directionality of the association (e.g., ξ1 → ξ2) or the unavailability to the analysis of 
variables purported to account for this overlap (e.g., ξ1 and ξ2 are related because they 
share a common cause that is not represented by observed measures or latent variables 
in the analysis). Nonetheless, as discussed in Chapter 8, higher- order factor analysis is 
a useful approach for explaining the covariances among factors when a strong theory 
exists in regard to the patterning of the factor interrelationships.

The parameters in Figures 3.3 and 3.4 also possess numerical subscripts to indicate 
the specific elements of the relevant matrices. For example, λx11 (Figure 3.3) indicates 

FIGURE 3.3. Latent X notation for a two- factor CFA model with one error covariance. Factor 
variances, factor means, and indicator intercepts are not depicted in the path diagram.

Name Parameter Matrix Type Description

Lambda-X λx Λx Regression Factor loadings

Theta-delta δ Θ δ Variance–covariance Error variances and covariances

Phi φ Φ Variance–covariance Factor variances and covariances

Tau-X τx Mean vector Indicator intercepts

Kappa κ Mean vector Latent means

Xi (Ksi) ξ Vector Names of exogenous variables
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fied. Conversely, if there are more pieces of non-redundant information than there are param-
eters to estimate, then the model is usually overidentified. If a model is underidentified, the
model’s parameters cannot be estimated uniquely and lavaan (or any other LVM program)
will return an error message. If a model is over- or just-identified, there should be unique
estimates for each parameter. For overidentified models, not only do they provide unique pa-
rameter estimates, but they can also provide measures of model fit (see Appendix A). This
is because they have degrees of freedom (df ). In LVMs, df can be thought of as the num-
ber of non-redundant pieces of information in the data minus the number of parameters to
estimate. Only overidentified models have df > 0.

Model identification can be tricky. Instead of going into all the complexities involved,
I give four rules-of-thumb conditions in the next three sections that should work for most
models with reflective LVs. Meeting these conditions typically produces an overidentified
LVM, or at least a just-identified LVM.

3.2.1.1 Number of Indicator Variables
If every latent variable in a model has at least four indicator variables and none of their error
variances covary, then there should not be a problem with identification. Why four variables?,
you may ask. Examine Figure 3.4 where there are 3 ◊ 4/2 = 6 pieces of non-redundant informa-
tion, and 6 parameters to estimate. Thus, it is just-identified. Now examine Figure 3.5, where
there are 4 ◊ 5/2 = 10 pieces of non-redundant information, but only 8 parameters to estimate,
making it overidentified.

Even if a LV cannot have at least four indicators, it can still be just-identified under any
of the following conditions.

1. The LV has three indicator variables, and the error variances do not covary.
2. The LV has at least two indicators with non-covarying error variances and the indica-

tor variables’ loadings are set equal to each other.
3. The LV has one indicator, the directional paths are set to one, and its error variance is

fixed to some value. The fixed value is usually either:
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(a) 0.0, meaning the indicator variable is measured with perfect reliability, or
(b) (1 ≠ rXXÕ)‡

2

X , where rXXÕ and ‡
2

X are the variable’s reliability and variance,
respectively.

An example of a single-indicator LVM is shown in Figure 3.6.

3.2.1.2 Latent Variable’s Scale
Because LVs are not directly observed, there are no inherent units by which to measure
them.Consequently, a LVM is not identified unless some parameter estimates are constrained
to set the latent variable’s scale. There are three common ways to set this scale.

1. Standardized latent variable. This method constrains the latent variable’s variance to
1.0. This, in e�ect, makes the latent variable a standardized variable (i.e, on a Z score
scale; see Section 1.1.12.2). If the indicator variables are standardized as well, the load-
ings can be interpreted the same as a standardized regression coe�cient: the number
of standard deviations the MV changes as the LV increases one standard deviation.
Moreover, if there is more than one LV, then the covariance among the LVs becomes a
correlation.

2. Marker variable. This method requires a single factor loading for each LV be con-
strained to an arbitrary value (usually 1.0). The indicator variable whose loading is
constrained is called the marker variable. This method uses the marker variable to de-
fine the LV’s variance.

3. E�ects-coding. This method estimates all the loadings, but constrains that the loadings
for a given LV average 1.0, or, equivalently, that their sum is equal to the number of
unique indicator variables.

These di�erent scaling methods produce di�erent values for the model’s parameters, but
should not alter how a model fits the data. I demonstrate all three scaling methods in Sec-
tion 3.3.1.
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Figure 3.5 Example with four indicator variables.
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Figure 3.6 Example of a latent variable
model with a single indicator.
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3.2.1.3 Other Conditions
There are two other conditions for the rules-of-thumb. It is atypical for these conditions not
to be met, so I do not discuss them in any detail.

1. If there is more than one LV in the model, then for every pair of LVs, either:
(a) There is at least one indicator variable per LV whose error variance does not

covary with the error variance of the other LV’s indicator variables, or
(b) The covariance between the pair of LVs is constrained to a specified value.

2. For every indicator variable, there must be at least one other indicator variable (of the
same LV or a di�erent LV) with whom the error variances do not covary.

3.2.1.4 Empirical Underidentification
Empirical underidentification is the situation where a LVM is only identified if one of
the parameters (usually a factor correlation or a factor loading) is not equal, or very close
to, 0.0.1 An example is shown in Figure 3.7. As long as |e| > 0, the model in Figure 3.7a
is overidentified because there are 4 ◊ 5/2 = 10 pieces of information with 9 parameters
to estimate. However if e = 0, then the model requires the estimation of two separate LVs,
as is the case in Figure 3.7b. For both LVs, there are 2 ◊ 3/2 = 3 pieces of non-redundant
information, but 4 parameters to estimate, making them each underidentified.

3.3 Example: Latent Variable Model with One Latent Variable
I demonstrate fitting a LVM in R by estimating the parameters for the model in Figure 3.3
using the data in Table 3.1. My syntax to enter the correlations and standard deviations
(SDs) is given below.

library(lavaan)
# convert vector of correlations into matrix
wisc4.cor <- lower2full(c(1,0.72,1,0.64,0.63,1,0.51,0.48,0.37,1,0.37,0.38,0.38,0.38,1))
# name the variables in the matrix
colnames(wisc4.cor) <- rownames(wisc4.cor) <- c("Information", "Similarities",
"Word.Reasoning", "Matrix.Reasoning", "Picture.Concepts")

1Sometimes the issue of empirical underidentification can arise if factor correlations are very close to 1.0 as
well.
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Figure 3.3 Single-factor model of five Wechsler Intelligence Scale for Children-Fourth Edition
subtests.

stead of factor loading because factor loading is an ambiguous term that can be confused
with structure coe�cient, which are the correlations between the MVs and the model’s
LVs. For models with one LV, pattern and structure coe�cients have the same values. For
models with more than one LV (see Section 3.3.2), they have di�erent values unless all the
LVs are uncorrelated with each other. To minimize confusion in this book, when I use the
terms factor loading or loading, I am referring to a pattern coe�cient. When I discuss struc-
ture coe�cients, I use the term explicitly.

In Figure 3.3, a, b, c, d, and e are all factor loadings. I can obtain something akin to a R
2

value for each MV using the tracing rules discussed in Section 2.1.3: find all the legitimate
paths that go from a MV to the LV(s) and return back to the same MV. This value is called
the communality. Conversely, the uniqueness is the amount of variance in the MV not
explained by the model’s LVs. For example, to find the communality for the Information MV
in Figure 3.3, I can go to the LV, g, and then back to Information only through the a path
(twice), thus the amount of variance of the Information MV that g explains is a

2. This makes
uniqueness of the Information variable: 1 ≠ a

2

= v.

3.2.1 Identification of Latent Variable Models
At the heart of model identification is the question: Is there enough non-redundant infor-

mation in the data to be able to estimate the required parameters uniquely? With regression,
identification is never an issue because they are always just-identified models, meaning that
the number of parameters to estimate exactly equals the amount of non-redundant informa-
tion in the data. For now, think of the amount of non-redundant information in the data as
being the number of non-redundant variances/covariances in the dataset. This can be easily
calculated using the formula in Equation (3.1).

non-redundant information in a dataset =

p(p + 1)

2

(3.1)

where p is the number of manifest variables.

With a LVM, model identification is more complex than with regression, as the models
can be just-identified, underidentified, or overidentified. If there are more parameters to
estimate than there are pieces of non-redundant information, then the model is underidenti-
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Figure 3.8 Single-factor model of five Wechsler Intelligence Scale for Children-Fourth Edition
subtests with standardized parameter estimates.

## 2 g =~ Similarities b 0.98 0.045 2.5 0.84 0.84
## 3 g =~ Word.Reasoning c 0.86 0.045 2.2 0.74 0.74
## 4 g =~ Matrix.Reasoning d 0.65 0.047 1.7 0.58 0.58
## 5 g =~ Picture.Concepts e 0.54 0.050 1.4 0.47 0.47
## 6 Information ~~ Information 2.40 0.250 2.4 0.27 0.27
## 7 Similarities ~~ Similarities 2.71 0.258 2.7 0.30 0.30
## 8 Word.Reasoning ~~ Word.Reasoning 4.01 0.295 4.0 0.45 0.45
## 9 Matrix.Reasoning ~~ Matrix.Reasoning 5.55 0.360 5.6 0.67 0.67
## 10 Picture.Concepts ~~ Picture.Concepts 6.91 0.434 6.9 0.78 0.78
## 11 g ~~ g 6.65 0.564 1.0 1.00 1.00

The top part of lavaan’s summary() output can be used to double-check to make sure the
model was specified correctly. For this model:

n = 550

df = (5 ◊ 6/2)

non-redundant

information

≠ (4 + 5)

loadings +

error varainces

≠ (1)

latent

variances

= 15 ≠ 9 ≠ 1 = 5

both of which are correct. The Latent variables section of the output gives the unstandard-
ized and standardized parameter estimates (in this example, they are all loadings), both of
which indicate that each indicator is a relatively strong measure of g, with Information being
the most saturated (i.e., having the strongest loading) and Picture Concepts being the least.
The Variances section gives the variances of the exogenous variables and the error variances
of the endogenous variables. A path model with all the standardized parameter estimates is
shown in Figure 3.8.

lavaan does not produce communality estimates, but I can calculate them using the trac-
ing rules. For example, the communality estimate for the Information subtest is a ◊ 1 ◊ a =

a
2

= 0.86

2

= 0.74, thus its uniqueness is 1 ≠ a
2

= 1 ≠ 0.86

2

= 0.26. Table 3.2 shows the factor
loadings and communality estimates for all the indicator variables.
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FIGURE 3.6. Examples of underidentified and just- identified CFA models.

Model A: Underidentified (df = –1)
Input Matrix (3 elements)

X1 X2
X1 σ 11
X2 σ 21 σ 22

Freely Estimated Model Parameters = 4
(e.g., 2 factor loadings, 2 error variances)

Model B: Just-Identified (df = 0)
Input Matrix (6 elements)

X1 X2 X3
X1 σ 11
X2 σ 21 σ 22
X3 σ 31 σ 32 σ 33

Freely Estimated Model Parameters = 6
(e.g., 3 factor loadings, 3 error variances)

Model C: Underidentified (df = –1)
Input Matrix (6 elements)

X1 X2 X3
X1 σ 11
X2 σ 21 σ 22
X3 σ 31 σ 32 σ 33

Freely Estimated Model Parameters = 7
(e.g., 3 factor loadings, 3 error variances, 1
error covariance)
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FUNDAMENTAL EQUATIONS OF A CFA MODEL

CFA aims to reproduce the sample variance– covariance matrix by the parameter esti-
mates of the measurement solution (e.g., factor loadings, factor covariances, etc.). To 
illustrate, Figure 3.3 has been revised: Parameter estimates have been inserted for all 
factor loadings, factor correlation, and indicator errors (see now Figure 3.5). For ease of 
illustration, completely standardized values are presented, although the same concepts 
and formulas apply to unstandardized solutions. The first three measures (X1, X2, X3) 
are indicators of one latent construct (ξ1), whereas the next three measures (X4, X5, X6) 
are indicators of another latent construct (ξ2). It can be said, for example, that indicators 
X4, X5, and X6 are congeneric (cf. Jöreskog, 1971a) because they share a common factor 
(ξ2).5 An indicator is not considered congeneric if it loads on more than one factor.

In the case of congeneric factor loadings, the variance of an indicator is reproduced 
by multiplying its squared factor loading by the variance of the factor, and then sum-
ming this product with the indicator’s error variance. The predicted covariance of two 
indicators that load on the same factor is computed as the product of their factor load-
ings times the variance of the factor. The model- implied covariance of two indicators 

FIGURE 3.5. Reproduction of the input matrix from the parameter estimates of a two- factor 
measurement model (completely standardized solution).

Predicted Variances–Covariances (Correlations):

X1       X2       X3       X4       X5       X6

X1  1.00000
X2  0.72000  1.00000
X3  0.76500  0.68000  1.00000
X4  0.36000  0.32000  0.34000  1.00000
X5  0.33750  0.30000  0.31875  0.60000  1.00000
X6  0.31500  0.28000  0.29750  0.56000  0.72500  1.00000
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that load on separate factors is estimated as the product of their factor loadings times 
the factor covariance. For example, based on the parameter estimates in the solution 
presented in Figure 3.5, the variance of X2 can be reproduced by the following equation 
(using latent X notation):

 VAR(X2) = σ22 = λx21
2φ11 + δ2 (3.4)

= .802(1) + .36

= 1.00

In the case of completely standardized solutions (such as the current illustration), one 
can reproduce the variance of an indicator by simply squaring its factor loading (.802) 
and adding its error (.36), because the factor variance will always equal 1.00 (how-
ever, the factor variance must be included in this calculation when one is dealing with 
unstandardized solutions). Note that the variance of ξ2 also equals 1.00 because of the 
completely standardized model (e.g., variance of X6 = λx62

2φ22 + δ6 = .702 + .51 = 1.00).
The squared factor loading represents the proportion of variance in the indicator 

that is explained by the factor (often referred to as a communality; see Chapter 2). For 
example, the communality of X2 is

 η2
22 = λx21

2 (3.5)
= .802

= .64

indicating that ξ1 accounts for 64% of the variance in X2. Similarly, in the completely 
standardized solution presented in Figure 3.5, the errors represent the proportion of 
variance in the indicators that is not explained by the factor; for example, δ2 = .36, 
indicating that 36% of the variance in X2 is unique variance (e.g., measurement error). 
These errors (residual variances) can be readily calculated as 1 minus the squared factor 
loading. Using the X2 indicator, the computation is:

 δ2 = 1 –  λx21
2 (3.6)

= 1 –  .802

= .36

The predicted covariance (correlation) between X2 and X3 is estimated as follows:

 COV(X2, X3) = σ3,2 = λx21φ11λx31 (3.7)
= (.80)(1)(.85)

= .68

As before, in the case of completely standardized solutions the factor variance will 
always equal 1.00, so the predicted correlation between two congeneric indicators can 
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be calculated by the product of their factor loadings; for instance, model- implied cor-
relation of X4, X5 = .80(.75) = .60.

The predicted covariance (correlation) between X3 and X4 (indicators that load on 
separate factors) is estimated as follows:

 COV(X3, X4) = σ4,3 = λx31φ21λx42 (3.8)
= (.85)(.50)(.80)

= .34

Note that the factor correlation (φ21) rather than the factor variance is used in this cal-
culation.

Figure 3.5 presents the 6 variances and 15 covariances (completely standardized) 
that are estimated by the two- factor measurement model. This model also contains a 
correlation between the errors of the X5 and X6 indicators (δ65 = .20). In this instance, 
the covariation between the indicators is not accounted for fully by the factor (ξ2); that 
is, X5 and X6 share additional variance due to influences other than the latent construct 
(e.g., method effects). Thus the equation to calculate the predicted correlation of X5 and 
X6 includes the correlated error:

 COV(X5, X6) = σ6,5 = (λx52φ22λx62) + δ65 (3.9)
= (.75)(1)(.70) + .20

= .725

CFA MODEL IDENTIFICATION

In order to estimate the parameters in CFA, the measurement model must be identi-
fied. A model is identified if, on the basis of known information (i.e., the variances and 
covariances in the sample input matrix), it is possible to obtain a unique set of parameter 
estimates for each parameter in the model whose values are unknown (e.g., factor load-
ings, factor correlations). Model identification pertains in part to the difference between 
the number of freely estimated model parameters and the number of pieces of informa-
tion in the input variance– covariance matrix. Before this issue is addressed, an aspect of 
identification specific to the analysis of latent variables is discussed— scaling the latent 
variable.

Scaling the Latent Variable

In order for a researcher to conduct a CFA, every latent variable must have its scale 
identified. By nature, latent variables are unobserved and thus have no defined metrics 
(units of measurement). Thus these units of measurement must be set by the researcher. 
In CFA, this is most often accomplished in one of two ways.
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In the first and by far the more popular method, the researcher fixes the metric of 
the latent variable to be the same as one of its indicators. The indicator selected to pass 
its metric on to the factor is often referred to as a marker or reference indicator. The guide-
lines for selecting and specifying marker indicators are discussed in Chapter 4. When a 
marker indicator is specified, a portion of its sample variance is passed on to the latent 
variable. Using Figure 3.5, suppose X1 is selected as the marker indicator for ξ1 and has 
a sample variance (σ11) of 16. Because X1 has a completely standardized factor loading 
on ξ1 of .90, 81% of its variance is explained by ξ1; .902 = .81 (cf. Eq. 3.5). Accordingly, 
81% of the sample variance in X1 is passed on to ξ1 to represent the factor variance of ξ1:

 φ11 = λx11
2σ11 (3.10)

= (.81)16

= 12.96

As will be shown in Chapter 4, these estimates are part of the unstandardized CFA solu-
tion.

In the second method, the variance of the latent variable is fixed to a specific value, 
usually 1.00. Consequently, a standardized and a completely standardized solution are 
produced. Although the latent variables have been standardized (i.e., their variances are 
fixed to 1.00), the fit of this model is identical to that of the unstandardized model (i.e., 
models estimated using marker indicators). While it is useful in some circumstances 
(e.g., as a parallel to the traditional EFA model), this method is used less often than the 
marker indicator approach. The former strategy produces an unstandardized solution 
(in addition to a completely standardized solution), which is useful for several purposes, 
such as tests of measurement invariance across groups (Chapter 7) and evaluations of 
scale reliability (Chapter 8). However, in many instances this method of scale setting can 
be considered superior to the marker indicator approach, especially when the indicators 
have been assessed on an arbitrary metric, and when the completely standardized solu-
tion is of more interest to the researcher (coupled with the fact that some programs, like 
Mplus, now provide standard errors and significance tests for standardized parameter 
estimates).

More recently, Little, Slegers, and Card (2006) have introduced a third method of 
scaling latent variables that is akin to effects coding in ANOVA. In this approach, a 
priori constraints are placed on the solution, such that the set of factor loadings for a 
given construct average to 1.00 and the corresponding indicator intercepts sum to zero. 
Consequently, the variance of the latent variables reflects the average of the indicators’ 
variances explained by the construct, and the mean of the latent variable is the opti-
mally weighted average of the means for the indicators of that construct. Thus, unlike 
the marker indicator approach— where the variances and means of the latent variables 
will vary, depending on which indicator is selected as the marker indicator— the method 
developed by Little et al. (2006) has been termed nonarbitrary because the latent vari-
able will have the same unstandardized metric as the average of all its manifest indica-
tors. This approach is demonstrated in Chapter 7.
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General
guidelines

§ SRMR <=.08

§ RMSEA <=.06  (.08)

§ CFI e TLI >=.95 (.90)





92 CORE TECHNIQUES

3. Select the measures (operationalize the constructs) and collect, prepare, and 
screen the data.

4. Estimate the model:

a. Evaluate model fit (if poor, skip to step 5).
b. Interpret parameter estimates.
c. Consider equivalent or near-equivalent models (skip to step 6).

5. Respecify the model (return to step 4).
6. Report the results.

Specification

The representation of your hypotheses in the form of a structural equation model is 
specification. Many researchers begin the process of specification by drawing a model 
diagram using a set of more or less standard graphical symbols (defined later), but the 
model can alternatively be described by a series of equations. These equations define 
the model’s parameters, which correspond to presumed relations among observed or 

FIGURE 5.1. Flowchart of the basic steps of SEM.

  91 

5

Specification

The specification of path analysis (PA) models, confirmatory factor analysis (CFA) mea-
surement models, and structural regression (SR) models is the topic of this chapter. Out-
lined first are the basic steps of SEM and graphical symbols used in model diagrams. 
Some straightforward rules are suggested for counting the number of observations 
(which is not the sample size) in the analysis and the number of model parameters. 
Both of these quantities are needed for checking model identification (next chapter). 
Actual research examples dealt with in more detail in later chapters are also intro-
duced. The main goal of this presentation is to give you a better sense of the kinds of 
hypotheses that can be tested with core structural equation models.

STEPS OF SEM

Six basic steps are followed in most analyses, and two additional optional steps, in a per-
fect world, would be carried out in every analysis. Review of these steps will help you to 
understand (1) the relation of specification, the main topic of this chapter, to later steps 
of SEM and (2) the utmost importance of specification.

Basic Steps

The basic steps are listed next and then discussed afterward, and a flowchart of these 
steps is presented in Figure 5.1. These steps are actually iterative because problems at a 
later step may require a return to an earlier step. (Later chapters elaborate specific issues 
at each step beyond specification for particular SEM techniques.)

1. Specify the model.
2. Evaluate model identification (if not identified, go back to step 1).
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