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3.1 Background

A structural equation model (SEM) is a broad class of statistical models (see Figure 3.1)
that consists of two parts: the structural model and the latent variable model. The struc-
tural model consists of the regression-like relationships among the variables (i.e., the path
analysis from Chapter 2). The latent variable model (LVM) forms the latent variables
(LVs) used in the structural model. When a LVM is analyzed without a structural model, it
is sometimes called a confirmatory factor analysis (CFA). If there was not a hypothesized
structure for the latent variable model, then it would be an exploratory factor analysis
(EFA). The majority of this book is focused on confirmatory LVMs, although in Section 3.4 1
demonstrate fitting a full SEM. Beaujean (2013) demonstrates how to conduct an EFA in R.
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Figure 3.1 Example of data analysis methods subsumed by a structural equation model.
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(a) LV is a reflective latent variable.

Figure 3.2 Reflective and formative latent variable path models.
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FIGURE 3.2. Path diagrams of measurement and structural models.
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Model A: Confirmatory Factor Model (all measurement error is random)
€ & & §&, €& & & §&

Model B: Exploratory Factor Model (oblique rotation)
€ & & &, €& & & §&

Model C: Confirmatory Factor Model (with a correlated measurement error)

€ & & &, € & & &

FIGURE 3.1. Path diagrams of confirmatory and exploratory factor models.

TABLE 3.1. Factor Loading Matrices from EFA
and CFA of Adolescent Antisocial Behaviors

A. CFA (factor correlation = .6224)

Factor

Property Crimes ~ Violent Crimes ~ Communality

Y1 .7996 .0000 .64
Y2 .6451 .0000 42
Y3 .5699 .0000 32
Y4 4753 .0000 23
Y5 .0000 7315 53
Y6 .0000 .5891 35
Y7 .0000 7446 .55
Y8 .0000 .5803 34

B. EFA (oblique rotation, factor correlation = .5722)

Factor

Property Crimes ~ Violent Crimes ~ Communality

Y1 9187 —-.0958 75
Y2 5422 .1045 37
Y3 .5300 .0372 .30
Y4 4494 .0103 21
Y5 .0434 .7043 53
Y6 -.1178 .6999 41
Y7 1727 .6106 52
Y8 .0264 5756 35

C. EFA (orthogonal rotation, factor correlation = 0)

Factor

Property Crimes ~ Violent Crimes ~ Communality

Y1 .8493 1765 75
Y2 .5509 2574 37
Y3 5185 .1898 .30
Y4 4331 .1408 21
Y5 .2587 .6826 53
Y6 .1032 .6314 41
Y7 3535 .6312 52
Y8 .2028 5552 35

Note. N = 1,050. Y1 = shoplifting, Y2 = vandalism, Y3 = theft,
Y4 = broke into building/vehicle, Y5 = fighting, Y6 = aggravated
assault, Y7 = hit family/teachers, Y8 = threatened others.
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A. Unrotated Factor Matrix

Unrotated Factor 2

" Factor
| 1 2
oa¥® Y1 834 —.160
1 * v Y2 813 -.099
A Y3 .788 —-.088
5 - Unrotated Factor 1 | :4 Y4 642 015
—— Y5 386 329
-1 -05 0 05 % 1 Y6 .333 .593
4.5 | Y7 313 497
Y8 .284 .336
n 1
—e—Research Data |
3.54 Random Data 1
B. Orthogonally Rotated Factor Matrix (Varimax)
° 3 | Rotated Factor 2 Factor
2
g | 1 2
c | Y6
g 295 o Y1 836 150
i Rotated Factor 1 1 ¢ Y2 794 199
2 | Y3 767 .201
Y4 .594 244
N~y Y5 242 445
1.5 -1 1 Y6 .098 .673
Y7 114 576
7. Y8 145 416
0.5
1
0 ' ' ' ' ' ' . . . . . . . . . . . . . ) C. Obliquely Rotated Factor Matrix (Promax)
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 ] Fotated Factor 2 Factor
Factor Number
| 1 2
o Y1 875  —.062
FIGURE 2.3. Parallel analysis using eigenvalues from research and random data (average of 50 1 y2 817 003
replications). Arrow indicates that eigenvalues from random data exceed the eigenvalues from Rotated Factor 1 | Y3 788 012
research data after the fourth factor. Y4 .588 .106
Y5 154 418
-1 v Y6 -.059 704
| Y7 -018 595
1 Y8 .055 413
]

FIGURE 2.4. Geometric representations of unrotated, orthogonally rotated, and obliquely
rotated factor matrices.
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FIGURE 2.1. Path diagram of the one-factor model.

Depression

A fundamental equation of the common factor model is

yj=7ujln1 +7\7-2T’|2+ . +7‘jmnm+£j (2.1)

where yj represents the jth of p indicators (in the case p = 4; O1, 02, O3, O4) obtained
from a sample of n independent participants (in this case, n = 300); ij represents the
factor loading relating variable j to the mth factor | (in the case m = 1; the single factor of
Depression); and € represents the variance that is unique to indicator ¥ and is indepen-
dent of all ns and all other €s. As will be seen in subsequent chapters, similar notation is
used to represent some of the equations of CFA. In this simple factor solution entailing
a single factor (n;) and four indicators, the regression functions depicted in Figure 2.1

can be summarized by four separate equations:

Ol=AM +8& (2.2)
O2=AM; +&
O3 =AMy + &
O4=hym; + &4

This set of equations can be summarized in a single equation that expresses the relation-
ships among observed variables (y), factors (1), and unique variances (¢):

y=An e (2.3)
or in expanded matrix form:
Z=AYA +O¢ (2.4)
VAR(OD) = 67 = A1 2w + & (2.5) COV(O1, 02) = 651 = AWy 1A

=.828%(1) + .315 = (.828)(1)(.841)
=1.00 - .696

(2.6)






Modelos de medida. Ancorados na teoria

= Validade? Até que ponto os indicadores sdao medidas validas do
construto ?

= Efeitos da variavel latente?
= Até que ponto a variavel latente é construto que se presume ?

= Recurso para testar a dimensionalidade das medidas

= Recurso para testar modelos alternativos

= Especifica-se dois modelos e verifica-se qual deles se ajusta melhor
aos dados

= Recurso para estimar correlagdes entre construtos nao-
atenuadas pelos erros de medida
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FIGURE 2.1. Path diagram of the one-factor model.



Name Parameter Matrix Type Description

Lambda-X |\ Ay Regression Factor loadings

Theta-delta |d ©5 |Variance—covariance |Error variances and covariances
Phi (0 o Variance—covariance |Factor variances and covariances
Tau-X Ty Mean vector Indicator intercepts

Kappa K Mean vector Latent means

Xi (Ksi) & Vector Names of exogenous variables

FIGURE 3.3. Latent X notation for a two-factor CFA model with one error covariance. Factor
variances, factor means, and indicator intercepts are not depicted in the path diagram.



Name Parameter Matrix Type Description

Lambda-Y Ay Ay Regression Factor loadings

Theta-epsilon (& CH Variance—covariance |Error variances and covariances

Psi Y ¥ Variance—covariance | Factor variances and
covariances

Tau-Y Ty Mean vector Indicator intercepts

Alpha o Mean vector Latent means

Eta n Vector Names of endogenous variables

FIGURE 3.4. Latent Y notation for a two-factor CFA model with one error covariance. Factor

variances, factor means, and indicator intercepts are not depicted in the path diagram.
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Name Parameter Matrix Type Description

Lambda-X |2y Ay Regression Factor loadings

Theta-delta |6 ©5 |Variance—covariance |Error variances and covariances
Phi [0} () Variance—covariance |Factor variances and covariances
Tau-X Ty Mean vector Indicator intercepts

Kappa K Mean vector Latent means

Xi (Ksi) £ Vector Names of exogenous variables

FIGURE 3.3. Latent X notation for a two-factor CFA model with one error covariance. Factor

variances, factor means, and indicator intercepts are not depicted in the path diagram.
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(a) Covariance matrix showing non-redundant
elements. (b) Latent variable model.

Figure 3.4 Example with three indicator variables.
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(a) Covariance matrix showing non-redundant
elements. (b) Latent variable model.

Figure 3.5 Example with four indicator variables.



3.2. Latent Variable Models

Word Matrix
Reasoning Reasoning Concepts

1 1 1 1 1

Figure 3.3 Single-factor model of five Wechsler Intelligence Scale for Children-Fourth Edition
subtests.

. T Picture
Information Similarities

n = 550
df = (5x6/2) — (4+5) — (1) =15-9—-1=5

non-redundant loadings + latent
information error varainces variances



Model A: Underidentified (df = —1)
Input Matrix (3 elements)

o % X1 X2
X1 G 11
X2 O 21 G 22

Freely Estimated Model Parameters = 4
(e.g., 2 factor loadings, 2 error variances)

Model B: Just-ldentified (df = 0)
Input Matrix (6 elements)

X1 X2 X3

X1 G 114
X2 0y O
X3 G331 O32 033

Freely Estimated Model Parameters = 6
(e.g., 3 factor loadings, 3 error variances)

Model C: Underidentified (df = —1)
Input Matrix (6 elements)

X1 X2 X3
X1 O 11
X2 O 21 O 2o
X3 G 31 O3 C33

Freely Estimated Model Parameters = 7
(e.g., 3 factor loadings, 3 error variances, 1
error covariance)

FIGURE 3.6. Examples of underidentified and just-identified CFA models.



19 36 2775 36 4375 51 VAR(X2) = Gy = hyy1 %y + 8, (3.4)
= .80%(1) + .36
=1.00
N5 = Aot® (3.5)
= .80%
= .64
Predicted Variances—Covariances (Correlations): 82 =]1- xelz (3,6)
x1 X2 X3 x4 X5 X6 =1-.80°
=.36
X1 1.00000
X2 0.72000 1.00000
X3 0.76500 0.68000 1.00000
X4 0.36000 0.32000 0.34000 1.00000
X5 0.33750 0.30000 0.31875 0.60000 1.00000 COV(X2, X3) =035 = A 101103 (3.7)
X6 0.31500 0.28000 0.29750 0.56000 0.72500 1.00000 = (80)(1)(.85)
= .68
FIGURE 3.5. Reproduction of the input matrix from the parameter estimates of a two-factor
measurement model (completely standardized solution).
= (.85)(.50)(.80)
=.34

= (75)(1)(70) + .20
=.725



In the first and by far the more popular method, the researcher fixes the metric of
the latent variable to be the same as one of its indicators. The indicator selected to pass
its metric on to the factor is often referred to as a marker or reference indicator. The guide-
lines for selecting and specifying marker indicators are discussed in Chapter 4. When a
marker indicator is specified, a portion of its sample variance is passed on to the latent
variable. Using Figure 3.5, suppose X1 is selected as the marker indicator for &; and has
a sample variance (07;) of 16. Because X1 has a completely standardized factor loading
on & of .90, 81% of its variance is explained by &;; .90> = .81 (cf. Eq. 3.5). Accordingly,
81% of the sample variance in X1 is passed on to &, to represent the factor variance of &;:

01 = 11?01 (3.10)
= (8116
=12.96



1Ol = http://www.labape.com.br/rprimi/SEM/exerc18/Ex5.html
ExerC|C|O 5 p://lwww.labape.com.br/rprimi exerc18/Ex5.htm




# marker variable

wisc4.model.Std<-'

g =~ NAxInformation + axInformation + bxSimilarities + c*Word.Reasoning +
d+*Matrix.Reasoning + exPicture.Concepts

# constrain the LV variance to 1
g~~1xg

wisc4.fit.Std <- cfa(wisc4.model.Std, sample.cov=wisc4.cor, sample.nobs=550)
# equivalent model
wisc4.fit.Std <- cfa(wisc4.model, sample.cov=wisc4.cor, sample.nobs=550, std.lv=TRUE)

3.3.2 Example: Latent Variable Model with Two Latent Variables

Lets say the model in Figure 3.3 is wrong; it should have had two LVs instead of one. Specifi-
cally, g should be replaced with LVs representing Verbal Comprehension and Fluid Reasoning,
as is shown in Figure 3.9. The steps in estimating this model are very similar to the model
with one LV, except I have to specify a slightly different model.

# two-factor model of the WISC-IV data
wisc4.model2<-"'

V =~ axInformation + bxSimilarities + cxWord.Reasoning
F =~ dxMatrix.Reasoning + exPicture.Concepts

V~~fxF

wisc4.fit2 <- cfa(wisc4.model2, sample.cov=wisc4.cov, sample.nobs=550)

The results are given in Table 3.3. The table includes both loadings (pattern coefficients)
and structure coefficients (see Section 3.2). To calculate the structure coefficients, I used
the tracing rules to trace the paths from a MV to a given LV. For example the structure
coefficient for the Information subtest and the Fluid LV is: af = (0.86)(0.82) = 0.71.

3The less than, <, and greater than, >, logical operators can be used in lavaan as well.

Information

Similarities

Matrix
Reasoning

Picture

Concepts

1 1 1 1 1

Figure 3.9 Model of five subtests from the Wechsler Intelligence Scale for Children-Fourth Edition

with two latent variables.

Table 3.3 Standardized Factor Pattern, Structure, and Correlation Coeflicients for the Latent
Variable Model in Figure 3.9.

Factor Pattern

Factor Structure

Variable \Y F \Y F Communality
Information 0.86 0.00 0.86 0.71 0.74
Similarities 0.84 0.00 0.84 0.71 0.71
Word Reasoning 0.74 0.00 0.74 0.61 0.55
Matrix Reasoning 0.00 0.69 0.57 0.69 0.47
Picture Concepts 0.00 0.55 0.45 0.55 0.30

Factor Correlations

A4 F
A% 1.00 0.82
F 0.82 1.00

V: Verbal Comprehension; F: Fluid Reasoning.
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ESTIMATION OF CFA MODEL PARAMETERS

The objective of CFA is to obtain estimates for each parameter of the measurement
model (i.e., factor loadings, factor variances and covariances, indicator error variances
and possibly error covariances) to produce a predicted variance—covariance matrix
(symbolized as X) that resembles the sample variance—covariance matrix (symbolized
as S) as closely as possible. For instance, in overidentified models (such as Figure 3.7A),
perfect fit is rarely achieved (i.e., X #S). Thus, in the case of a CFA model such as Figure
3.7A, the goal of the analysis is to find a set of factor loadings (A1, Ayyy, gz, Agqy) that
yield a predicted covariance matrix (X) that best reproduces the input matrix (S)—for
example, to find parameter estimates for A,;; and A,,; such that the predicted correla-
tion between X1 and X2 (Ay;;0;1A);) closely approximates the sample correlation of
these indicators (G,;) (although in the actual estimation process, this occurs simultane-
ously for all parameters and implied covariances). This process entails a fitting function,
a mathematical operation to minimize the difference between X and S. By far, the fitting
function most widely used in applied CFA research (and SEM in general) is ML. The fit-
ting function that is minimized in ML is

Fypp = InlS| - In|Z| + trace[(S)(Z)] -p (3.15)

where |S] is the determinant of the input variance—covariance matrix; || is the determi-
nant of the predicted variance—covariance matrix; p is the order of the input matrix (i.e.,
the number of input indicators); and In is the natural logarithm. Although a full explica-
tion of this function is beyond the scope of this chapter (cf. Bollen, 1989; Eliason, 1993),
a few observations are made in effort to foster its conceptual understanding (see also
Appendix 3.3).° The determinant and trace summarize important information about
matrices such as S and X. The determinant is a single number (i.e., a scalar) that reflects
a generalized measure of variance for the entire set of variables contained in the matrix.
The trace of a matrix is the sum of values on the diagonal (e.g., in a variance—covariance
matrix, the trace is the sum of variances). The objective of ML is to minimize the differ-
ences between these matrix summaries (i.e., the determinant and trace) for S and X. The

DESCRIPTIVE GOODNESS-OF-FIT INDICES

The classic goodness-of-fit index is 2. Under typical ML model estimation, 7 is calcu-
lated as

X2 =FyN-1 (3.17)

although latent variable software programs (e.g., Mplus, LISREL starting with Version
9.1) increasingly calculate x> by multiplying Fy;; by N instead of N — 1.8 Using N, the
Figure 3.8 model %2 is 81.093 (0.4054651 * 200). Because this model is associated with
1 df, the critical x? value (o0 = .05) is 3.84 (i.e., x> = 2% = 1.96% = 3.8416). The model x>
of 81.093 exceeds the critical value of 3.84, and thus the null hypothesis that S = X is
rejected. Thus a statistically significant > (latent variable software programs provide




X2 test

Asymptotically (i.e., with really large sample sizes), the sample size multiplied by the
value of the fit function produces a statistic, T', that follows a X2 distribution with the de-
grees of freedom (df) equal to the amount of non-redundant information minus the number
of estimated p:auramletmrs.2

# fit value, chi-square value of T, df, and p-value
fitMeasures(wisc4.fit, fit.measures = c("fmin", "chisq", "df", "pvalue"))

##  fmin chisq df pvalue
## 0.024 26.166 5.000 0.000

If a X2 value is “non-significant” (i.e, p-value > «), this indicates that the model fits the
data relatively well. If the x> value is “significant” (i.e, p-value < «), the model does not
fit the data well, but it does not necessarily mean the model is not useful, as there are mul-

. 2 . . .
tiple reasons why a x“ value might be larger than expected (e.g., sample size, assumption
violations).

Some models are variants of other models. That is, they are the same except that one or
more parameters are constrained in one model (alternative/more restrictive), but not the
other (baseline/less restrictive). Such models are called nested models. For example, if I
constrained the loadings for the Matrix Reasoning and Picture Concepts to be the same in

Figure A.1, then that model would be nested in the model that does not have the constraint.

As another example, the hierarchy of invariance models listed in Table 4.1 are nested in each
other (the models with larger numbers are nested within the models with smaller numbers).
With nested models, the difference in the T' statistics’ values from the more restrictive to
the less restrictive model follows a X2 distribution with df equal to the difference in the two
models’ df. In lavaan, two nested models can be compared using the anova() function.

ZBecause of the way the ML fit function is defined in lavaan, the T is calculated slightly differently as

T=nxfx2~x’

anova(wisc4.fit, wisc4.2.fit)

## Chi Square Difference Test

##t

##t Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## wisc4.fit 5 12689 12732 26.2

## wisc4.2.fit 6 12690 12729 29.4 3.21 1 0.073 .
#Ht - --

## Signif. codes: 0 'sxx' 0.001 'xx' 0.01 'x' .05 '.' 6.1 ' ' 1

Nested Model

The anova() function
tests a variety of
nested models in R,
not just those from
lavaan.

anova()



Absolute Fit

Absolute fit indices assess model fit at an absolute level; in various ways, they evaluate
the reasonability of the hypothesis that S = X without taking into account other aspects
(such as fit in relation to more restricted solutions). Thus % is an example of an absolute
fit index. Another index that falls in this category is the standardized root mean square
residual (SRMR). Conceptually, the SRMR can be viewed as the average discrepancy
between the correlations observed in the input matrix and the correlations predicted by
the model (though in actuality the SRMR is a positive square root average; see Eq. 3.18
below). Accordingly, it is derived from a residual correlation matrix (e.g., see Figure
3.8). A similarly named index, the root mean square residual (RMR), reflects the aver-
age discrepancy between observed and predicted covariances. However, the RMR can
be difficult to interpret because its value is affected by the metric of the input variables;
thus the SRMR is generally preferred. In most instances (e.g., models involving a single
input matrix), the SRMR can be calculated by (1) summing the squared elements of the
residual correlation matrix and dividing this sum by the number of elements in this
matrix (on and below the diagonal); that is, a = p(p + 1) / 2 (Eq. 3.14), and (2) taking the
square root of this result. For example, the SRMR of the Figure 3.8 solution would be
computed as follows:

SRMR = SQRT[(0% + 02 + 0% + 4% + 02 + 0%/ 6] = .163 (3.18)




Parsimony Correction

Although sometimes grouped under the category of absolute fit indices (e.g., Hu &
Bentler, 1999), parsimony correction indices differ from y, SRMR, and so forth by incor-
porating a penalty function for poor model parsimony (i.e., number of freely estimated
parameters as expressed by model df). For example, consider a scenario where two dif-
ferent models, Model A and Model B, fit a sample matrix (S) equally well at the absolute
level; yet the specification of Model B entails more freely estimated parameters than
Model A (i.e.,, Model A has more dfs than Model B). Indices from the parsimony class
would thus favor Model A over Model B because the Model A solution fit the sample data
with fewer freely estimated parameters.

A widely used and recommended index from this category is the root mean square
error of approximation (RMSEA; Steiger & Lind, 1980). The RMSEA is a population-
based index that relies on the noncentral x?* distribution, which is the distribution of
the fitting function (e.g., Fy;;) when the fit of the model is not perfect. The noncentral
x?* distribution includes a noncentrality parameter (NCP), which expresses the degree
of model misspecification. The NCP is estimated as x> — df (if the result is a negative
number, NCP = 0). When the fit of a model is perfect, NCP = 0 and a central > distri-
bution holds. When the fit of the model is not perfect, the NCP is greater than 0 and
shifts the expected value of the distribution to the right of that of the corresponding
central XZ (cf. Figure 1 in MacCallum, Browne, & Sugawara, 1996). The RMSEA is
an “error of approximation” index because it assesses the extent'to which a model
fits reasonably well in the population (as opposed to testing whether the model holds
exactly in the population; cf. x?). To foster the conceptual basis of the calculation of
RMSEA, the NCP is rescaled to the quantity d: d = x> — df / (N). The RMSEA is then
computed:

RMSEA = SQRT(d / df) (3.19)

where df is the model df (although slight variations exist in some programs; e.g., some
programs use N — 1 instead of N). As can be seen in Eq. 3.19, the RMSEA compensates
for the effect of model complexity by conveying discrepancy in fit (d) per each df in the
model. Thus it is sensitive to the number of model parameters; being a population-based
index, the RMSEA is relatively insensitive to sample size. The RMSEA from the Figure
3.8 solution would be

RMSEA = SQRT(40/ 1) = 0.63

where d = (81.093 — 1) /200 = 0.40.




Comparative Fit

Comparative fit indices (also referred to as incremental fit indices; e.g., Hu & Bentler,
1998) evaluate the fit of a user-specified solution in relation to a more restricted, nested
baseline model. Typically, this baseline model is a “null” or “independence” model in
which the covariances among all input indicators are fixed to zero, although no such
constraints are placed on the indicator variances (however, other types of null models
can and sometimes should be considered; cf. O’'Boyle & Williams, 2011). As one might
expect, given the relatively liberal criterion of evaluating model fit against a solution
positing no relationships among the variables, comparative fit indices often look more
favorable (i.e., more suggestive of acceptable model fit) than indices from the preceding
categories. Nevertheless, some indices from this category have been found to be among
the best behaved of the host of indices that have been introduced in the literature.

One of these indices, the comparative fit index (CFI; Bentler, 1990), is computed as
follows:

CFI = 1 - max[(y2; — dfp), 01 / max[(x%; — dfy), (g — df), O] (3.20)

where %27 is the y? value of the target model (i.e., the model under evaluation); dfy is the
df of the target model; 7 is the ) value of the baseline model (i.e., the “null” model);
and dfy is the df of the baseline model. Also, max indicates to use the largest value—for

example, for the numerator, use (x’; — dfy) or 0, whichever is larger. The x%; and dfy
of the null model are included as default output in most software programs. If the user
wishes to obtain these values in programs that do provide this information, y%z and dfy
can be calculated by fixing all relationships to 0 (but freely estimating the indicator vari-
ances). The CFI has a range of possible values between zero and one, with values closer
to one implying good model fit. Like the RMSEA, the CFI is based on the NCP (i.e., A =
x>t — dfy, included in standard output of some programs such as LISREL), meaning that
it uses information from expected values of XZT or XZB (or both, in the case of the CFI)
under the noncentral %2 distribution associated with S # X (e.g., central %2 is a special
case of the noncentral 2 distribution when A = 0). Using the results of the Figure 3.8
model, the CFI would be

CFI=1-[(81.093 — 1) / (227.887 - 3)] = .644

Another popular and generally well-behaved index falling under this category is the
Tucker-Lewis index (TLI; Tucker & Lewis, 1973), referred to as the non-normed fit index
in some programs). In addition, the TLI has features that compensate for the effect of
model complexity; that is, as does the RMSEA, the TLI includes a penalty function for
adding freely estimated parameters that do not markedly improve the fit of the model.
The TLI is calculated by the following formula:

TLI = [(x%g / dfy) — O/ dfP1 /1% / dfp) — 1] (3.21)

where, as with the CFI, XZT is the XZ value of the target model (i.e., the model under
evaluation); dfy is the df of the target model; y%y is the x* value of the baseline model
(i.e., the “null” model); and dfg is the df of the baseline model. Unlike the CFI, the TLI
is non-normed, which means that its values can fall outside the range of zero to one.
However, it is interpreted in a fashion similar to the CFI, in that values approaching one
are interpreted in accord with good model fit. The TLI for the Figure 3.8 solution is

TLI = [(227.877 /3) — (81.093 / 1] / [(227.877 / 3) — 1] = -0.068

The goodness-of-fit indices from each category point to the poor fit of the Figure
3.8 solution: %*(1) = 81.093, p < .001, SRMR = .163, RMSEA = 0.633, CFI = .644, TLI =
—0.068. Although straightforward in the Figure 3.8 example, the issues and guidelines
for using these descriptive indices of overall model fit are considered more fully in the
next section of this chapter.



General
guidelines

= SRMR <=.08
= RMSEA <=.06 (.08)
= CFl e TLI >=.95 (.90)

should lead the researcher to strongly suspect (reject) the solution, CFI and TLI values
in the range of .90 and .95 may be indicative of acceptable model fit (e.g., Bentler, 1990).

In keeping with the notion that this is a contentious area of methodological research,
some researchers have asserted that the Hu and Bentler (1999) guidelines are far too
conservative for many types of models, including CFA models consisting of many indi-
cators and several factors where the majority of cross-loadings and error covariances are
fixed to zero (cf. Marsh, Hau, & Wen, 2004). Moreover, because the performance of fit
statistics and their associated cutoffs have been shown to vary as a function of various
aspects of the model (e.g., degree of misspecification, size of factor loadings, number of
factors; e.g., Beauducel & Wittman, 2005), the fit statistic thresholds suggested by simu-
lation studies may have limited generalizability to many types of measurement models
in applied research.

Nonetheless, when fit indices fall into these “marginal” ranges, it is especially
important to consider the consistency of model fit as expressed by the various types
of fit indices in tandem with the particular aspects of the analytic situation (e.g., when
N is somewhat small, an RMSEA = 0.08 may be of less concern if all other indices are
strongly in a range suggesting “good” model fit). Again, this underscores the importance
of considering fit indices from multiple fit categories (absolute fit, parsimony correction,
comparative fit) in tandem with examining other relevant aspects of the solution (e.g.,
localized areas of ill fit; interpretability and size of parameter estimates). These aspects
of model evaluation are discussed in Chapter 4.



Table A.1 Fit Measures Available in lavaan.

Fit Measure

Full Name

fmin
chisq
df

pvalue
baseline.chisq
baseline.df
baseline.pvalue
logl

unrestricted. logl

npar
ntotal

agfi

aic

bic

bic2

cfi

cn_05

cn_01

ecvi

gfi

ifi

mfi

nfi

nnfi

pgfi

pnfi

rfi

rni

rmsea
rmsea.ci.lower
rmsea.ci.upper
rmsea.pvalue
rmr
rmr_nomean
srmr

srmr_nomean
tli

Test Statistic and Related
Fit function value
X2 value based on the fit function
Degrees of freedom (df) for model
p-value for obtained X2 value and df
X2 value for baseline model
Degrees of freedom for baseline model
p-value for the baseline model
Logarithm of the likelihood statistic
Logarithm of the likelihood statistic for baseline model
Number of estimated parameters in the model

Total sample size

Alternative Fit Indezes (alphabetically organized)
Adjusted Goodness-of-Fit Index
Akaike Information Criterion
Bayesian Information Criterion
Bayesian Information Criterion Adjusted for Sample Size
Comparative Fit Index
Critical n for a = 0.05
Critical n for a = 0.01
Expected Cross-Validation Index
Goodness-of-Fit Index
Incremental Fit Index
McDonald Fit Index
Normed Fit Index
Non-Normed Fit Index
Parsimony Goodness-of-Fit Index
Parsimony Normed Fit Index
Relative Fit Index
Relative Noncentrality Index
Root Mean Square Error of Approximation (RMSEA)
Lower bound of 95% confidence interval for RMSEA
Upper bound of 95% confidence interval for RMSEA
p-value associated with Hy: RMSEA < 0.05
Root Mean Square Residual (includes means, if used in model)
Root Mean Square Residual (no means)
Standardized Root Mean Square Residual (includes means, if used in
model)
Standardized Root Mean Square Residual (no means)
Tucker-Lewis Index

n: sample size. a: Type 1 error. Hyp: Null hypothesis.
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FIGURE 5.1. Flowchart of the basic steps of SEM.



3.6 Writing the Results

Believe it or not, there is actually literature on writing LVM literature (e.g., Boomsma, Hoyle,
& Panter, 2012; McDonald & Ho, 2002). While there are some differences in the authors’ sug-
gestions, there are also many areas of consensus. They all agree that a LVM should include:

1. A theoretical and empirical justification for the hypothesized model;

2. A complete description of how the LVMs were specified (i.e., the indicator variables for
each LV, the scaling of the LVs, a description of what parameters were estimated and
constrained);

3. A description of sample (i.e., demographic information, sample size, sampling method);

4. A description of the type of data used (e.g., nominal, continuous) and descriptive statis-
tics;

5. Tests of assumptions (specifically that the indicator variables follow a multivariate
normal distribution and estimator used (see Appendix A);

6. A description of missing data and how the missing data was handled (see Chapter 7);

7. The software and version used to fit the model;
8. Measures, and the criteria used, to judge model fit (see Appendix A); and
9. Any alterations made to the original model based on model fit or modification indices.

In addition, all reports should have a table with all parameter estimates (i.e., loadings, er-
ror variances, latent [co]variances), their standard errors, and standardized versions for the
final model as well as any other significant model if more than one model was fit to the data.
In Section 2.6, I discussed the xtable() function, which works on lavaan output from the
parameterEstimates() function, thus creating an easy way to export lavaan parameter results
into a table. Likewise, to increase research replicability, the LVM manuscript should also in-
clude the sample covariance matrix(es) either in the body of the text or in an appendix. The
xtable() function can help facilitate this process as well.

While not mandatory, it is very useful to include a neatly drawn path model of the final
LVM, as well as any other significant model if more than one model was fit to the data. In
the diagram, place the standardized or unstandardized (or both) coefficients along a given
path. If using unstandardized coefficients, or leaving out any part of the LVM for ease of
reading (e.g., the error variance terms), indicate this in the figure’s caption. Nicol and Pex-
man (2010) give some examples of publication-ready diagrams that include LVs.



