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ARTICLE INFO ABSTRACT

Article history: The association between fluid intelligence and inter-individual differences was investigated using multilevel 22
Received 21 February 2009 growth curve modeling applied to data measuring intra-individual improvement on math achievement tests. 23
Received in revised form 24 February 2010 A sample of 166 students (88 boys and 78 girls), ranging in age from 11 to 14 (M=12.3, SD=0.64), was 24
252?12 Lelg (zjn]\l/ilgz )2(23(3 tested. These individuals took four math achievement tests, which were vertically equated via Item Response 25
Theory, at the beginning and end of the seventh and eighth grade. The cognitive abilities studied were 26
Keywords: Numerical Reasoning, Abstract Reasoning, Verbal Reasoning, and Spatial Reasoning (as measured by the 27
Growth curve modeling Differential Reasoning Test). The general cognitive factor was significantly associated with the parameters of 28
Intelligence initial level (intercept) and rate of change (slope). A high level of intelligence was associated with higher 29
Math learning initial scores, as well as a steeper rise in math scores across the two years. 30
Multilevel analysis © 2010 Published by Elsevier Inc. 31
33
In the psychometric tradition, fluid intelligence (Gf) is defined as the in learning, especially in novel situations (Kvist & Gustafsson, 2008; 56
use of deliberate mental operations to solve novel problems (i.e., tasks Voelkle, Wittmann, & Ackerman, 2006; Watkins, Lei & Canivez, 2007). 57
that cannot be performed as a function of simple memorization or Although fluid and crystallized intelligences are viewed as differentiated 58
routine). Such mental operations include drawing inferences, concept constructs, Gf provides the foundation for Gc since it supports the 59
formation, classification, generating and testing hypothesis, identifying acquisition of skills and knowledge that is the essence of Gc, as proposed 60
relations, comprehending implications, problem solving, extrapolating, by Cattell's investment theory (Cattell,1971). In this sense, Gf is also 61
and transforming information (McGrew, 2009; McGrew & Evans, 2004; conceived of as the ability to learn new information and, consequently, 62
Kane & Gray, 2005). Fluid intelligence is contrasted with crystallized to adapt to novel situations. This occurs especially in the early phases of 63
intelligence (Gc), which refers to the wealth (breadth and depth) of learning, when the learner encounters new information and new 64
acquired knowledge (Cattell, 1963, 1971; Horn, 1991). Ackerman experiences that are initially perceived as being somewhat disorganized 65
(1996) also refers to two kinds of general capacities, intelligence as and disconnected. In those situations, the ability to work in a systematic 66
process versus intelligence as knowledge, both involved in and controlled manner, with the goal of finding regularities in 67
cognitive functioning. information, is a key strategy for the creation of stable representations 68
Fluid intelligence is closely related to general or g-factor intelligence and the formation of new knowledge (McArdle & Hamagami, 2006; 69
(Ackerman, Beier & Boyle, 2002; Blair, 2006; Salthhouse, Pink & Tucker- McArdle, Hamagami, Meredith, & Bradway, 2000). Novel and complex 70
Drob, 2008), which is itself based in‘executive functions related to situations require higher cognitive abilities for the systematic processes 71
perception, attention and working memory (Ackerman, Beier & Boyle, of selection, maintenance, updating, and rerouting, which are crucial for 72
2005; Engle, Tuholski, Laughlin & Conway, 1999; D'Esposito, 2007; dealing with situations of “information overload” (Primi, 2002; Primi 73
Kane, Habrick &.Conway,»2005; Shimamura, 2000; Smith & et al,, 2001). Controlled learning studies which use laboratory tasks to 74
Jonides, 1999). Fluid intelligence is also recognized as a causal factor measure rate of learning via repeated measures (Ackerman & Cianciolo, 75
2002; Voelkle et al., 2006), as well as those attempting to ascertain the 76
* This paper is based on the author's postdoc fellowship activities that took place in structural relationships between abilities and learning (Snow, I(yllopen, 77
University of Beira Interior, Portugal under the orientation of Dra. Maria Eugénia Ferrao & Marshalek, 1984)' have shown that the strongest correlations 78
and Dr. Leandro S. Almeida, financed by the Brazilian National Research Council (CNPq). between fluid intelligence (Gf) and learning are found when tasks are 79
It is part of a larger project entitled 3EM — School Effectiveness in Math Teaching both new and complex. Thus, novelty and complexity of information 80
ﬁnanced‘by the Mini§try of Science and Technology and College Education and Calouste moderate the correlation between fluid intelligence and learning. 81
Gulbenkian Foundation from Portugal. . ) Several studies have shown that fluid intelligence is an important s2
Corresponding author. Rua Ferreira Penteado, 1518, Apt. 41, Bairro Cambui, . K
Campinas, S3o Paulo, CEP 13025-357, Brazil. Tel.: +55 19 81492244, predictor of math achievement (Floyd, Evans, & McGrew, 2003; 83
E-mail address: rprimi@mac.com (R. Primi). McGrew, 2008; McGrew & Hessler, 1995; Taub, Floyd, Keith, & 84
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McGrew, 2008). The understanding of math concepts requires the
formation of abstract representations of quantitative and qualitative
relations between variables. Further, it requires the ability to link second
order relationships in a logical and ordered manner and the ability to
manipulate visual representations. Thus, owing to the inherent
complexity of mathematics instruction, we hypothesize that success
in learning math requires, and is therefore correlated with, fluid
intelligence (Busse, Berninger, Smith, & Hildebrand, 2001; Geary,
1993, 2007).

Even though a fundamental aspect of fluid intelligence is the ability
to learn in novel situations, there is some debate about this definition in
the literature, inconsistent data have been presented on the relationship
between fluid intelligence and measures of learning. It has been shown
that intelligence is associated with initial level but not with rate of
improvement on simple learning tasks (Lohman, 1999; Woodrow,
1946; Zhang, Davis, Salthouse, & Tucker-Drob, 2007; Tamez, Myerson, &
Hale, 2008; Williams & Pearlberg, 2006). Moreover, psychometric
difficulties and misunderstandings often arise from the use of difference
scores (post-test minus pre-test scores) as a measure of learning
(Rogosa & Willett, 1983; Willett, 1989, 1997). Recent applications of
multilevel modeling (Bryk & Raudenbush, 1987; Plewis, 2005) and
latent growth curve analysis (McArdle & Hamagami, 2001) have been
proposed as a way of overcoming problems in this regard.

As was pointed out by Voelkle et al. (2006), one important difficulty
in the study of the relationship between ability and learning is the
determination of actual acquisition of a specific skill or concept. Usually
studies use a measure of learning at a single point in time as the criterion
to be predicted. But in order to measure actual acquisition, it is necessary
to have longitudinal or repeated measures data (viz., two or more
within-subject measures over time). It is also necessary to use adequate
statistical models such as those that take into account the hierarchical
structure of data (e.g., repeated measures grouped within students).
Multilevel models (Goldstein, 2003; Bryk & Raudenbush, 1987; McArdle
& Hamagami, 2001; Plewis, 2005), specifically the growth curve model,
are now widely used to accommodate such a data structure. Recent
studies have applied these methods to the investigation of the
association between cognitive abilities and rates of learning (i.e.,
Swanson, Jerman, & Zheng, 2008; Voelkle et al., 2006; Zhang et al.,
2007). With the exception of Swanson et al. (2008), we are not aware of
any other research using growth curve modeling to test the association
between fluid intelligence and math learning. Thus, although fluid
intelligence is theoretically considered to be an influential factor for
complex learning such as math, there is little empirical evidence of its
association with actual measures of learning based on longitudinal
growth curve analysis.

This paper contributes to that matter-by pursuing two objectives.
The first is to contribute to the field by having gathered empirical
evidence about the relation between fluid intelligence and individual
differences in improved math-achievement test scores. Thus, we
aimed to test the hypothesis that fluid. intelligence is not only an
important predictor of math achievement (which is also related to
past learning) at the concurrent or entry level for the longitudinal
measures, but that it is‘also-a predictor of growth. The other purpose
of this paper was to illustrate multilevel modeling using longitudinal
data in the context of intelligence-learning interaction research.

1. Method
1.1. Participants

The data for this study comes from a larger database of a school
effectiveness research project (3EM), coordinated by the second author
(Ferrdo, 2009; Ferrdo & Goldstein, 2009). The population is defined by
students enrolled in compulsory education in the region of Cova da
Beira, a NUT III Portuguese region. The survey design is longitudinal.
Data were collected at the beginning and at the end of academic years

2005/6,2006/7 and 2007/8. Two cohorts of students were considered. In
2005/6 the 1st, 3rd, 5th, 7th and 8th grade students were involved. They
were monitored in the 2nd, 4th, 6th, 8th and 9th grades, respectively,
and a new cohort at the 1st, 3rd, 5th, and 7th years was surveyed. In
2007/8 all these students were monitored again. The random sample is
representative at the level of county and NUT IIl region (Vicente, 2007).

For the purposes of this paper, we focused on the students that
began the 7th grade in 2005/6 and ended the 8th in 2006/7. Among
the 166 pupils, 88 were boys and 78 girls. Ages varied from 11 to 14
(M=12.3, SD=0.64) at the beginning of the study. The choice of 7th
grade students is related to the fact that in Portugal the transition
between elementary and lower education is marked by high rates of
student repetition (no promotion to the next grade).

1.2. Materials

1.2.1. Math tests

3EMat is a battery of tests designed for the assessment of Math skills
throughout primary, elementary and lower secondary education
(Ferrdo et al, 2005). Each test includes around 30 selected items
covering the core curriculum for each grade. Item calibration (discrim-
ination and difficulty) was done during the pre-test at the end of 2004/5.
A two-parameter item response logistic model (Birnbaum, 1968),
implemented by BILOG computer software for the estimation of item
and ability parameters (Zimowski, Muraki, Mislevy, & Bock 1996), was
used. The Bayes Expected a Posteriori (EAP) procedure with a latent
scale (normal standard) was applied. The test booklets included
common items (about 30%) from adjacent grades in order to allow
posterior vertical equating. The distribution of items per subjects is
approximately as follows: 7th grade, Geometry 24%; Numbers 36%;
Equations 27%; and Statistics 13%; 8th grade, Geometry 39%; Numbers
30%; Equations 12%; Functions 13%; and Statistics 6%.

1.2.2. Intelligence tests

Cognitive abilities were assessed using the Differential Reasoning
Tests Battery (Almeida, 1988; Almeida, 1992). Although tests are based
on analogy or series tasks combining different contents, the same
cognitive operation-reasoning or fluid intelligence-is evaluated for
each of the different domains: Numerical Reasoning (NR), consisting of
30 numerical series items involving simple arithmetic operations;
Abstract Reasoning (AR) consisting of 40 involving abstract analogies of
geometric figures; Verbal Reasoning (VR) consisting of 40 items
involving verbal analogies; and Spatial Reasoning (SR) consisting of
30 spatial series related to the rotation of the six faces of a cube.

The Kuder-Richardson coefficient for internal consistency varies
from 0.78 for VR to 0.91 for NR. Factor analysis revealed a single
general factor (near 60% of the variance explained). This is considered
to represent Gf. The NR, AR, VR and SR scores are the residuals of the
linear regression of Gf on each raw score, respectively. The analysis
includes data collected at the beginning of the study.

1.2.3. Statistical model

The growth curve multilevel model was used in order to estimate
individual growth parameters, to check whether the variance of these
parameters across individuals was statistically significant, and to
investigate their association with predictive variables. Level 1 consists
of repeated observations hierarchically nested within pupils to
constitute Level 2. Individual growth trajectories are modeled at Level
1 by Eq. (1), where parameters are considered to be random across
pupils. At Level 2, intelligence variables can be tested for their capacity to
predict personal outcome variables; that is, 71y; math achievement at the
beginning of the study and my; the average of change in one year. The
model is defined by Egs. (1), (2) and assumptions (3):
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Level 1 equation
Yi = Ty + M0, + ey (1

Level 2 equations
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where Yj; is the dependent variable (math achievement) of student i
at time t; 1mg; represents the math achievement of student i when ay; is
equal to 0 (0: beginning of 7th grade; 1: end of 7th grade; 2: end of 8th
grade); 1my;, the growth rate for student i over a year. The term e;; is the
level-1 within-pupil residual. This term is assumed to be independent
and normally distributed, with mean 0 and variance oZ. Boo is the
overall mean of math achievement at the beginning of 7th grade;301
is the average growth in mathematics achievement across students.
Both parameters are conditioned on q predictor variables (Xg;), such as
Gf, NR, etc.; ro; is the deviation of student i from the mean initial status
and ry; the deviation of student i from the average growth on math
achievement (again, conditioned by q predictors). These terms are
assumed to be normally distributed, with mean zero and variances
0%, 0%, respectively, and the covariance between those terms is 01
The Bogrepresents the relationship between intelligence variables and
initial math achievement, while (3;, represents the association
between such variables and growth.

According to the working hypotheses 3o, would differ significantly
from zero, since Gf is associated with math achievement. If Gf indeed
captures some underlying reasoning mechanism important for math
learning, high Gf students would be expected to reveal greater growth,
as determined by a comparison of their change from prior achievement
to that of an average Gf student. Hence we expected that 3, would also
differ from zero, and if this was the case, we would argue that this is
evidence in favor of the influential role of Gf on math learning.

2. Results
2.1. Descriptive statistics

Table 1 presents the descriptive statistics for all variables used. It can
be seen that achievement in mathematics tends to increase from the
first to the second occasion, but even more from the third to the fourth
occasion. Another pattern.is that math achievement at the end of the
year is peaked and varies more (see positive kurtosis) than at the
beginning of the year. Intelligence variables are considered in the
adequate range with the exception of NR, which seems to be more
difficult for this sample of students.

Fig. 1 presents the individual growth curves for the 166 subjects
divided by three groups based on Gf raw scores quartiles (below 25
percentile, between 25 and 75 and above 75 percentile) suggesting that
there is ample inter-individual variability in patterns of intra-individual
growth and this pattern appears to be related to intelligence.

Table 2 presents the correlations between all variables and it can be
observed that all of them are positively correlated. This evidence
corroborates past research results (Almeida, 1992; Primi & Almeida, 2000).
It is interesting to note that difference scores correlated significantly with

Table 1
Descriptive statistics of math (criterion) and intelligence (predictor variables).
Min. Max. Mean Std. dev. Skew. Kurt.

Measurements
Math1 —2.28 2.30 0.21 0.98 —0.16 —0.36
Math2 —2.56 5.63 0.70 1.49 0.68 0.74
Math2 — math1 —1.63 3.64 0.48 0.98 0.73 0.99
Math3 —4.09 4.98 0.70 1.49 0.05 0.40
Math4 —3.15 5.84 1.52 1.49 0.33 1.26
Math4 — math3 —3.92 3.94 0.82 1.37 —0.41 0.29
NR 0.03 0.40 0.20 0.08 —0.04 —0.67
VR 0.18 0.73 0.45 0.13 0.00 —0.77
SR 0.10 0.87 0.41 0.16 0.15 —0.44
AR 0.09 0.86 0.55 0.15 —-0.71 0.06
BPRD 0.16 0.65 0.40 0.10 —0.10 —0.67

Note. Math1: math performance at the beginning of academic year 2005/6 (occasion 1);
math2: math performance at the end of academic year 2005/6 (occasion 2); math3:
math performance at the beginning of academic year 2006/7 (occasion 3); math4: math
performance at the end of academic year 2006/7 (occasion 4); math2 — math1: simple
difference score subtracting math1 from math2; math4 —math3: simple difference
score subtracting math3 from math4; NR: Numerical Reasoning; VR: Verbal Reasoning;
SR: Spatial Reasoning; AR: Abstract Reasoning; BPRD: total score (general factor) on the
four subtests.

each other and with intelligence measures, showing that there was
reliable inter-individual differences in rate of learning associated with
fluid intelligence. The negative correlation between math3 and math4
—math3 suggest a possible ceiling effect for high abilities students
restricting the amount of gain illustrating the difficulties that surrounds
measures of learning.

2.2. Statistical modeling

Table 3 presents the estimates of the Linear Growth Model
parameters, which were obtained by an Iterative Generalized Least
Squares algorithm implemented in MLWIN (Rasbash, Steele, William, &
Prosser, 2005) based on 498 cases (3 time occasions for 166 students).
Model O (null model) is comprised of Eqs (1) and (2) without predictors.
Approximately equal amounts of variance were observed on math
achievement among individuals and on individual growth during the
two-year period. Two questions are addressed by model 0: it tells us
what the average of change is (equal or different from zero); and
whether there is evidence of inter-individual variation in individual
growth. Model 1aincludes the a; math achievement, and considers that
initial achievement varies across students (3gpand 03o), but growth

Gf (BPRD)

<P25 P25-p75

6.00
5.00 A
4.00
3.00 4
2.00 A
1.00 4
0.00
-1.00 A
-2.00 1
-3.00 1
-4.00
-5.00
-6.00 1

T T T T T T T T T
Mat1  Mat2 Mat Mat1  Mat2 Matd Mat1 Mat2 Matd
Fig. 1. Individual growth curves in math of three subgroups differing in fluid
intelligence.
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Table 2
Correlation among variables of the study.
1 2 3 4 5 6 7 8 G 10 11
1. math1 1
2. math2 0.76™* 1
3. math2 — math1 0.16* 0.76** 1
4. math3 0.53"* 0.54* 0.30"* 1
5. math4 0.61** 0.73** 0.51* 0.58** 1
6. math4 — math3 0.26** 0.39** 0.34** —0.21** 0.68** 1
7.NR 0.59** 0.56™* 0.27** 0.36™* 0.55** 0.34* 1
8.VR 0.44** 0.45™ 0.25"* 0.21* 0.39** 0.28™* 0.53* 1
9.SR 0.43** 0.34** 0.09 0.29** 031* 0.11 0.49** 0.42** 1
10. AR 0.53* 0.50"* 0.23** 0.24** 0.46** 0.34** 0.55* 0.52** 0.45™ 1
11. BPRD 0.63** 0.59" 0.27** 0.35™ 0.55** 0.34** 0.82** 0.79** 0.75™ 0.80** 1

*p<0.05; **p<0.01.

(B1o) is fixed. These results, presented in the middle part of Table 3,
show that the mean growth rate is indeed statistically different from
zero (B1o=0.567, t=12.6, p<0.01), indicating that a unit change in
time (corresponding to a single year) is, on the average, associated with
a 0.57 increase in math achievement. Moreover, the initial achievement
reveals a considerable amount of variance across students
(030 =0.945).

Model 1b is an extension of Model 1a in that it allows the growth
parameter to vary randomly across students. In this way, it is possible
to test the second basic question of whether this modification
propitiates a better-fitted model, therefore being suggestive of the
existence of inter-individual differences in individual growth. The
deviance test for the goodness of fit suggests that both parameters are
statistically significant. The variance of growth is 03; = 0.285, which is
statistically significant, but lower than the variance involved in the
initial achievement. This model suggests that the correlation between
initial achievement and growth is 0.120.

Table 4 present the results for Model 2, which includes intelligence
as predictor of initial status (rp;) and growth (ry;), after testing all ten

Table 3
Estimated parameters of the multilevel linear growth model for math achievement
with predictors not included (unconditional model).

Unconditional linear Parameter t ratio

growth models

Coef./ se
Var.

Model 0: Baseline Model and variance components estimation
Level 2 variance Var(ro;) = 03 1.062
Level 1 variance Var(eg;) = 03 1.021
Deviance — 2*Loglikelihood 1658.63

0.156
0.079

Model 1a: Including moment predictor and its coefficients as fixed parameters
Fixed effects

Mean initial math achievement g 0.215 0.075 2.866

Mean math growth rate Bio 0.567 0.045 12.600
Random effect

Initial math achievement Var(ro;) = 030 0.945 0.104

Error (Level 1 residual variance)  Var(e;) =03, 0.661 0.077

— 2*Loglikelihood 1496.78

Model 1b: Including moment predictor and its coefficients as random parameters
varying across subjects (unconditional model)
Fixed effects

Mean initial math achievement  fgo 0.215 0.075 2.866

Mean math growth rate Bio 0.567 0.053 10.698
Random effect

Initial math achievement Var(ro;) = 0% 0.945 0.104

Growth rate Var(ry;) = 03, 0285  0.056

Covariance between initial Cov(roiT1i) 0.064 0.052

achievement and growth rate

Error (Level 1 residual variance)  Var(e;) =03, 0.377 0.041

Deviance — 2*Loglikelihood 1461.25

Difference relative to Model 1a 35.53

(df=2)

possible combinations. Therefore, the results of the best fitted model are
shown (only the significant predictors). The deviance (as compared
with model 1b) is 106.19 (df= 3) which indicates that the inclusion of
these predictors generally reduces the discrepancies between observed
and predicted math scores.

Estimates suggest a strong relationship between intelligence
scores (Gf and NR) and initial math achievement. More importantly,
Gfalso served as a significant predictor of the growth rate. Fig. 1 shows
individual growth curves for the 166 subjects, separated into three
groups of increasing levels of fluid intelligence. It can be seen that the
slope is slightly less steep for subjects in the low fluid group (left panel

figure). A comparison of variances of the initial status and growth rate :

in Model 1b with variances in Model 3, allowed for calculation of the
amount of variance accounted for by intelligence predictors. This was
done by comparing the difference in total variance (estimated by the

unconditional model, 0.945 and 0.285, respectively, for initial 312
achievement and growth rate) and the residual variance (based on 31i:
the fitted model including predictors, 0.556 and 0.259) relative to the :

total variance (Raudenbush & Bryk, 2002). Thus for the initial status,
0.41 of the variance ((0.945—0.556)/0.945) is accounted for by

intelligence tests whereas for growth rate, 0.09 ((0.285—0.259)/ :
0.285) is accounted for by the predictors. Thus, the results of this final :

model provide evidence that fluid intelligence is capable of predicting

growth rate above and beyond its capacity to predict math scores :

(initial status). This is consistent with our central hypothesis
regarding the role of fluid intelligence in math learning.

Table 4
Estimated parameters of the multilevel linear growth model for math achievement
with predictors included (conditional model).

Conditional linear Parameter Coef./ se t ratio
growth models Var.
Model 2: Final model including predictors (conditional)
Fixed effects
Mean initial math achievement (o 0.215 0.058 3.706
Mean math growth rate Bio 0.567 0.052 10.903
Predictors for initial math achievement
Gf Bo1 0.616 0.063 9.777
NR Bo2 2.054 0.942 2.180
Predictor for growth in math achievement
Gf B 0.274 0.065 4.215
Random effects
Initial math achievement Var(ro;) = 0% 0.556 0.061
Growth rate Var(ry;) = 0%, 0259  0.052
Covariance between initial Cov(ro;T1i) —0.057 0.039
achievement and growth rate
Error (Level 1 residual variance) Var(eg;) = 0% 0.364 0.040
Deviance — 2*Loglikelihood 1355.06
Diference as compared with 106.19

Model 2b (df=3)
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3. Discussion

The present study investigated the association of fluid intelligence
with inter-individual differences in intra-individual growth on math
achievement. It has also illustrated the utility of using multilevel
modeling in the analysis of longitudinal data in intelligence research.
The general results are in accordance with a common finding in the
literature that individual differences in fluid intelligence are strongly
related to math achievement when the measures are taken concur-
rently (Floyd et al., 2003; McGrew & Hessler, 1995; Taub et al., 2008).
It then shows that there are important inter-individual differences in
intra-individual growth patterns in math achievement over a two-
year period, with some subjects increasing their math scores at a
faster rate than others. One substantial finding was that these
individual differences in growth rate could be explained, at least in
part, by fluid intelligence. Individuals with higher fluid intelligence
reveal a faster increase in math scores over a span of two years than do
individuals with a lower fluid intelligence.

This evidence is in accordance with similar findings from previous
research using growth curve modeling that encountered a correlation
between rate of change (Willett, 1989, 1997) and intelligence factors
(Swanson et al., 2008; Voelkle et al., 2006). It is also consistent with
other studies, using different methodological approaches, which found a
positive correlation between fluid intelligence and rate of learning
(Hambrick et al., 2008; Tamez et al., 2008; Watkins et al., 2007; Williams
& Pearlberg, 2006). Moreover, it is consistent with the results of the
controlled experimental studies of Klauer and Phye (2008) designed to
develop fluid abilities and which showed that increases in inductive
reasoning abilities were also accompanied by improved learning of
classroom subject matter.

The results of this study support the hypothesis that fluid intelligence
is an important factor in learning a math curriculum. The general
explanation is that fluid intelligence is associated with reasoning abilities
(both inductive and deductive) involved in understanding and solving
novel problems (Ackerman, & Cianciolo, 2002; Blair, 2006; Busse et al.,
2001; Geary, 1993, 2007; Heitz et al., 2005; Kane et al., 2005; Primi, 2002;
Snow et al., 1984; Swanson et al., 2008). However, the results are partly
inconsistent with those of Zhang et al. (2007). These latter authors applied
latent growth curve modeling to analyze a laboratory memory task
involving verbal and spatial stimulus and found no general association
between rate of learning (slope parameter) and measures of fluid and
crystallized intelligence. They only found that these measures were
correlated with the intercept, i.e.,, the concurrent initial levels. The only
exception was for a younger sample where their results are comparable to
ours with respect to slope parameter.

There are many methodological differences that can explain this
apparent inconsistency. The most significant of these relates to the
dimension of task complexity, which has been found to moderate the
relationship between intelligence and learning (Ackerman, 1996;
Ackerman et al., 2002; Snow et al., 1984; Voelkle et al,, 2006). The
learning task in Zhang et al. (2007) study required that the subjects had
to memorize unrelated words through repetitive exposure and spatial
positions of previously viewed figures in a matrix, a task which may not
required much attentional control, processing and recombination of
new information, as would have been required for a more complex task
such as learn a math concept. Learning parameters of simple tasks
would not be expected to correlate with fluid intelligence measures.
Perhaps a slightly more complex task, such as those used by Tamez et al.
(2008) and Williams and Pearlberg (2006) involving a group of
associated words, would have been sufficient to reveal the association
with fluid intelligence found in these latter two studies. Conversely,
learning measures involving the domain of math taught at school, which
are more comparable to the complex tasks used by Ackerman et al.
(2002), Voelkle et al. (2006), Snow et al. (1984), and Swanson et al.
(2008), would show this relationship and may also explain the
similarity of results with these studies.

Other relevant methodological difference include the time lag

between measures used to derivate slope parameters that was minutes :

for Zhang et al. (2007) and one year in the present study. This difference

may again suggest that the construct underlying learning measures :
differs between studies and could explain the apparent inconsistencies. :
Finally, since results are similar for comparable age groups it could be :

suggested that age may also moderates the association of intelligence
and learning.

In summary fluid intelligence has been shown to be related to faster :

learning of math consistent with the definition of intelligence as an ability

to learn. Hence, as was illustrated in this study, growth curve modelingisa :

flexible and important methodological tool for the investigation of
patterns of learning and its association with predictor variables, and can
be very helpful in answering this type of research questions about the
underlying mechanism of intelligence-learning relationships.
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