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OThe association between fluid intelligence and inter-individual differences was investigated using multilevel

growth curve modeling applied to data measuring intra-individual improvement on math achievement tests.
A sample of 166 students (88 boys and 78 girls), ranging in age from 11 to 14 (M=12.3, SD=0.64), was
tested. These individuals took four math achievement tests, which were vertically equated via Item Response
Theory, at the beginning and end of the seventh and eighth grade. The cognitive abilities studied were
Numerical Reasoning, Abstract Reasoning, Verbal Reasoning, and Spatial Reasoning (as measured by the
Differential Reasoning Test). The general cognitive factor was significantly associated with the parameters of
initial level (intercept) and rate of change (slope). A high level of intelligence was associated with higher
initial scores, as well as a steeper rise in math scores across the two years.
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In the psychometric tradition, fluid intelligence (Gf) is defined as the
use of deliberate mental operations to solve novel problems (i.e., tasks
that cannot be performed as a function of simple memorization or
routine). Such mental operations include drawing inferences, concept
formation, classification, generating and testing hypothesis, identifying
relations, comprehending implications, problem solving, extrapolating,
and transforming information (McGrew, 2009; McGrew& Evans, 2004;
Kane & Gray, 2005). Fluid intelligence is contrasted with crystallized
intelligence (Gc), which refers to the wealth (breadth and depth) of
acquired knowledge (Cattell, 1963, 1971; Horn, 1991). Ackerman
(1996) also refers to two kinds of general capacities, intelligence as
process versus intelligence as knowledge, both involved in
cognitive functioning.

Fluid intelligence is closely related to general or g-factor intelligence
(Ackerman, Beier & Boyle, 2002; Blair, 2006; Salthhouse, Pink & Tucker-
Drob, 2008), which is itself based in executive functions related to
perception, attention and working memory (Ackerman, Beier & Boyle,
2005; Engle, Tuholski, Laughlin & Conway, 1999; D'Esposito, 2007;
Kane, Habrick & Conway, 2005; Shimamura, 2000; Smith &
Jonides, 1999). Fluid intelligence is also recognized as a causal factor
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TEin learning, especially in novel situations (Kvist & Gustafsson, 2008;
Voelkle, Wittmann, & Ackerman, 2006; Watkins, Lei & Canivez, 2007).
Althoughfluid and crystallized intelligences are viewedasdifferentiated
constructs, Gf provides the foundation for Gc since it supports the
acquisition of skills and knowledge that is the essence ofGc, as proposed
by Cattell's investment theory (Cattell,1971). In this sense, Gf is also
conceived of as the ability to learn new information and, consequently,
to adapt to novel situations. This occurs especially in the early phases of
learning, when the learner encounters new information and new
experiences that are initially perceived as being somewhat disorganized
and disconnected. In those situations, the ability towork in a systematic
and controlled manner, with the goal of finding regularities in
information, is a key strategy for the creation of stable representations
and the formation of new knowledge (McArdle & Hamagami, 2006;
McArdle, Hamagami, Meredith, & Bradway, 2000). Novel and complex
situations require higher cognitive abilities for the systematic processes
of selection,maintenance, updating, and rerouting, which are crucial for
dealing with situations of “information overload” (Primi, 2002; Primi
et al., 2001). Controlled learning studies which use laboratory tasks to
measure rate of learning via repeatedmeasures (Ackerman & Cianciolo,
2002; Voelkle et al., 2006), as well as those attempting to ascertain the
structural relationships between abilities and learning (Snow, Kyllonen,
& Marshalek, 1984), have shown that the strongest correlations
between fluid intelligence (Gf) and learning are found when tasks are
both new and complex. Thus, novelty and complexity of information
moderate the correlation between fluid intelligence and learning.

Several studies have shown that fluid intelligence is an important
predictor of math achievement (Floyd, Evans, & McGrew, 2003;
McGrew, 2008; McGrew & Hessler, 1995; Taub, Floyd, Keith, &
longitudinal multilevel approach applied to math,
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McGrew, 2008). The understanding of math concepts requires the
formation of abstract representations of quantitative and qualitative
relationsbetween variables. Further, it requires the ability to link second
order relationships in a logical and ordered manner and the ability to
manipulate visual representations. Thus, owing to the inherent
complexity of mathematics instruction, we hypothesize that success
in learning math requires, and is therefore correlated with, fluid
intelligence (Busse, Berninger, Smith, & Hildebrand, 2001; Geary,
1993, 2007).

Even though a fundamental aspect of fluid intelligence is the ability
to learn in novel situations, there is some debate about this definition in
the literature, inconsistent data have beenpresented on the relationship
between fluid intelligence and measures of learning. It has been shown
that intelligence is associated with initial level but not with rate of
improvement on simple learning tasks (Lohman, 1999; Woodrow,
1946; Zhang, Davis, Salthouse, & Tucker-Drob, 2007; Tamez,Myerson, &
Hale, 2008; Williams & Pearlberg, 2006). Moreover, psychometric
difficulties andmisunderstandings often arise from the use of difference
scores (post-test minus pre-test scores) as a measure of learning
(Rogosa & Willett, 1983; Willett, 1989, 1997). Recent applications of
multilevel modeling (Bryk & Raudenbush, 1987; Plewis, 2005) and
latent growth curve analysis (McArdle & Hamagami, 2001) have been
proposed as a way of overcoming problems in this regard.

As was pointed out by Voelkle et al. (2006), one important difficulty
in the study of the relationship between ability and learning is the
determination of actual acquisition of a specific skill or concept. Usually
studies use ameasure of learning at a single point in timeas the criterion
tobe predicted. But in order tomeasure actual acquisition, it is necessary
to have longitudinal or repeated measures data (viz., two or more
within-subjectmeasures over time). It is also necessary to use adequate
statistical models such as those that take into account the hierarchical
structure of data (e.g., repeated measures grouped within students).
Multilevelmodels (Goldstein, 2003; Bryk&Raudenbush, 1987;McArdle
& Hamagami, 2001; Plewis, 2005), specifically the growth curve model,
are now widely used to accommodate such a data structure. Recent
studies have applied these methods to the investigation of the
association between cognitive abilities and rates of learning (i.e.,
Swanson, Jerman, & Zheng, 2008; Voelkle et al., 2006; Zhang et al.,
2007).With the exception of Swanson et al. (2008), we are not aware of
any other research using growth curve modeling to test the association
between fluid intelligence and math learning. Thus, although fluid
intelligence is theoretically considered to be an influential factor for
complex learning such as math, there is little empirical evidence of its
association with actual measures of learning based on longitudinal
growth curve analysis.

This paper contributes to that matter by pursuing two objectives.
The first is to contribute to the field by having gathered empirical
evidence about the relation between fluid intelligence and individual
differences in improved math achievement test scores. Thus, we
aimed to test the hypothesis that fluid intelligence is not only an
important predictor of math achievement (which is also related to
past learning) at the concurrent or entry level for the longitudinal
measures, but that it is also a predictor of growth. The other purpose
of this paper was to illustrate multilevel modeling using longitudinal
data in the context of intelligence–learning interaction research.

1. Method

1.1. Participants

The data for this study comes from a larger database of a school
effectiveness research project (3EM), coordinated by the second author
(Ferrão, 2009; Ferrão & Goldstein, 2009). The population is defined by
students enrolled in compulsory education in the region of Cova da
Beira, a NUT III Portuguese region. The survey design is longitudinal.
Data were collected at the beginning and at the end of academic years
Please cite this article as: Primi, R., et al., Fluid intelligence as a predict
Learning and Individual Differences (2010), doi:10.1016/j.lindif.2010.05.
2005/6, 2006/7 and2007/8. Two cohorts of studentswere considered. In
2005/6 the 1st, 3rd, 5th, 7th and 8th grade studentswere involved. They
were monitored in the 2nd, 4th, 6th, 8th and 9th grades, respectively,
and a new cohort at the 1st, 3rd, 5th, and 7th years was surveyed. In
2007/8 all these students were monitored again. The random sample is
representative at the level of county and NUT III region (Vicente, 2007).

For the purposes of this paper, we focused on the students that
began the 7th grade in 2005/6 and ended the 8th in 2006/7. Among
the 166 pupils, 88 were boys and 78 girls. Ages varied from 11 to 14
(M=12.3, SD=0.64) at the beginning of the study. The choice of 7th
grade students is related to the fact that in Portugal the transition
between elementary and lower education is marked by high rates of
student repetition (no promotion to the next grade).
D
PR

OO
F1.2. Materials

1.2.1. Math tests
3EMat is a battery of tests designed for the assessment of Math skills

throughout primary, elementary and lower secondary education
(Ferrão et al., 2005). Each test includes around 30 selected items
covering the core curriculum for each grade. Item calibration (discrim-
ination anddifficulty)wasdoneduring the pre-test at the endof 2004/5.
A two-parameter item response logistic model (Birnbaum, 1968),
implemented by BILOG computer software for the estimation of item
and ability parameters (Zimowski, Muraki, Mislevy, & Bock 1996), was
used. The Bayes Expected a Posteriori (EAP) procedure with a latent
scale (normal standard) was applied. The test booklets included
common items (about 30%) from adjacent grades in order to allow
posterior vertical equating. The distribution of items per subjects is
approximately as follows: 7th grade, Geometry 24%; Numbers 36%;
Equations 27%; and Statistics 13%; 8th grade, Geometry 39%; Numbers
30%; Equations 12%; Functions 13%; and Statistics 6%.
TE1.2.2. Intelligence tests
Cognitive abilities were assessed using the Differential Reasoning

Tests Battery (Almeida, 1988; Almeida, 1992). Although tests are based
on analogy or series tasks combining different contents, the same
cognitive operation–reasoning or fluid intelligence–is evaluated for
each of the different domains: Numerical Reasoning (NR), consisting of
30 numerical series items involving simple arithmetic operations;
Abstract Reasoning (AR) consisting of 40 involving abstract analogies of
geometric figures; Verbal Reasoning (VR) consisting of 40 items
involving verbal analogies; and Spatial Reasoning (SR) consisting of
30 spatial series related to the rotation of the six faces of a cube.

The Kuder–Richardson coefficient for internal consistency varies
from 0.78 for VR to 0.91 for NR. Factor analysis revealed a single
general factor (near 60% of the variance explained). This is considered
to represent Gf. The NR, AR, VR and SR scores are the residuals of the
linear regression of Gf on each raw score, respectively. The analysis
includes data collected at the beginning of the study.
1.2.3. Statistical model
The growth curve multilevel model was used in order to estimate

individual growth parameters, to check whether the variance of these
parameters across individuals was statistically significant, and to
investigate their association with predictive variables. Level 1 consists
of repeated observations hierarchically nested within pupils to
constitute Level 2. Individual growth trajectories are modeled at Level
1 by Eq. (1), where parameters are considered to be random across
pupils. At Level 2, intelligencevariables canbe tested for their capacity to
predict personal outcome variables; that is, π0imath achievement at the
beginning of the study and π1i the average of change in one year. The
model is defined by Eqs. (1), (2) and assumptions (3):
or of learning: A longitudinal multilevel approach applied to math,
001

http://dx.doi.org/10.1016/j.lindif.2010.05.001
Original text:
Inserted Text
"1"

Original text:
Inserted Text
"2"



OF

207

208209
210

211212
213

214215
216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

Table 1 t1:1

Descriptive statistics of math (criterion) and intelligence (predictor variables).
t1:2
t1:3Min. Max. Mean Std. dev. Skew. Kurt.

t1:4Measurements
t1:5Math1 −2.28 2.30 0.21 0.98 −0.16 −0.36
t1:6Math2 −2.56 5.63 0.70 1.49 0.68 0.74
t1:7Math2−math1 −1.63 3.64 0.48 0.98 0.73 0.99
t1:8Math3 −4.09 4.98 0.70 1.49 0.05 0.40
t1:9Math4 −3.15 5.84 1.52 1.49 0.33 1.26
t1:10Math4−math3 −3.92 3.94 0.82 1.37 −0.41 0.29
t1:11NR 0.03 0.40 0.20 0.08 −0.04 −0.67
t1:12VR 0.18 0.73 0.45 0.13 0.00 −0.77
t1:13SR 0.10 0.87 0.41 0.16 0.15 −0.44
t1:14AR 0.09 0.86 0.55 0.15 −0.71 0.06
t1:15BPRD 0.16 0.65 0.40 0.10 −0.10 −0.67

Note. Math1: math performance at the beginning of academic year 2005/6 (occasion 1);
math2: math performance at the end of academic year 2005/6 (occasion 2); math3:
math performance at the beginning of academic year 2006/7 (occasion 3); math4: math
performance at the end of academic year 2006/7 (occasion 4); math2−math1: simple
difference score subtracting math1 from math2; math4−math3: simple difference
score subtracting math3 frommath4; NR: Numerical Reasoning; VR: Verbal Reasoning;
SR: Spatial Reasoning; AR: Abstract Reasoning; BPRD: total score (general factor) on the
four subtests. t1:16

Fig. 1. Individual growth curves in math of three subgroups differing in fluid
intelligence.
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Level 1 equation

Yti = π0i + π1iati + eti ð1Þ

Level 2 equations

π0i = β00 + ∑
Q

q=1
β0qXqi + r0i

π1i = β10 + ∑
Q

q=1
β1qXqi + r1i

ð2Þ

Assumptions

r0i
r1i

" #
∼N

0

0

" #
;

σ2
r0

σr01 σ2
r1

2
4

3
5

0
@

1
A

eti∼Nð0;σ2
e Þ;

ð3Þ

where Yti is the dependent variable (math achievement) of student i
at time t; π0i represents the math achievement of student iwhen ati is
equal to 0 (0: beginning of 7th grade; 1: end of 7th grade; 2: end of 8th
grade); π1i, the growth rate for student i over a year. The term eti is the
level-1 within-pupil residual. This term is assumed to be independent
and normally distributed, with mean 0 and variance σe

2. β00 is the
overall mean of math achievement at the beginning of 7th grade;β01
is the average growth in mathematics achievement across students.
Both parameters are conditioned on q predictor variables (Xqi), such as
Gf, NR, etc.; r0i is the deviation of student i from the mean initial status
and r1i the deviation of student i from the average growth on math
achievement (again, conditioned by q predictors). These terms are
assumed to be normally distributed, with mean zero and variances
σr0
2 , σr1

2 , respectively, and the covariance between those terms is σr01.
The β0qrepresents the relationship between intelligence variables and
initial math achievement, while β1q represents the association
between such variables and growth.

According to the working hypotheses β0q would differ significantly
from zero, since Gf is associated with math achievement. If Gf indeed
captures some underlying reasoning mechanism important for math
learning, high Gf students would be expected to reveal greater growth,
as determined by a comparison of their change from prior achievement
to that of an average Gf student. Hencewe expected that β1qwould also
differ from zero, and if this was the case, we would argue that this is
evidence in favor of the influential role of Gf on math learning.

2. Results

2.1. Descriptive statistics

Table 1 presents the descriptive statistics for all variables used. It can
be seen that achievement in mathematics tends to increase from the
first to the second occasion, but even more from the third to the fourth
occasion. Another pattern is that math achievement at the end of the
year is peaked and varies more (see positive kurtosis) than at the
beginning of the year. Intelligence variables are considered in the
adequate range with the exception of NR, which seems to be more
difficult for this sample of students.

Fig. 1 presents the individual growth curves for the 166 subjects
divided by three groups based on Gf raw scores quartiles (below 25
percentile, between 25 and 75 and above 75 percentile) suggesting that
there is ample inter-individual variability in patterns of intra-individual
growth and this pattern appears to be related to intelligence.

Table 2 presents the correlations between all variables and it can be
observed that all of them are positively correlated. This evidence
corroboratespast researchresults(Almeida,1992;Primi&Almeida,2000).
It is interesting to note that difference scores correlated significantly with
Please cite this article as: Primi, R., et al., Fluid intelligence as a predict
Learning and Individual Differences (2010), doi:10.1016/j.lindif.2010.05.0
TE
D
PR

Oeach other and with intelligence measures, showing that there was
reliable inter-individual differences in rate of learning associated with
fluid intelligence. The negative correlation between math3 and math4
−math3 suggest a possible ceiling effect for high abilities students
restricting the amount of gain illustrating the difficulties that surrounds
measures of learning.

2.2. Statistical modeling

Table 3 presents the estimates of the Linear Growth Model
parameters, which were obtained by an Iterative Generalized Least
Squares algorithm implemented inMLWIN (Rasbash, Steele,William, &
Prosser, 2005) based on 498 cases (3 time occasions for 166 students).
Model 0 (nullmodel) is comprisedof Eqs (1) and (2)without predictors.
Approximately equal amounts of variance were observed on math
achievement among individuals and on individual growth during the
two-year period. Two questions are addressed by model 0: it tells us
what the average of change is (equal or different from zero); and
whether there is evidence of inter-individual variation in individual
growth.Model 1a includes the atimath achievement, and considers that
initial achievement varies across students (β00and σ00

2 ), but growth
or of learning: A longitudinal multilevel approach applied to math,
01
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Table 2t2:1

Correlation among variables of the study.
t2:2
t2:3 1 2 3 4 5 6 7 8 9 10 11

t2:4 1. math1 1
t2:5 2. math2 0.76** 1
t2:6 3. math2−math1 0.16* 0.76** 1
t2:7 4. math3 0.53** 0.54** 0.30** 1
t2:8 5. math4 0.61** 0.73** 0.51** 0.58** 1
t2:9 6. math4−math3 0.26** 0.39** 0.34** −0.21** 0.68** 1
t2:10 7. NR 0.59** 0.56** 0.27** 0.36** 0.55** 0.34** 1
t2:11 8. VR 0.44** 0.45** 0.25** 0.21** 0.39** 0.28** 0.53** 1
t2:12 9. SR 0.43** 0.34** 0.09 0.29** 0.31** 0.11 0.49** 0.42** 1
t2:13 10. AR 0.53** 0.50** 0.23** 0.24** 0.46** 0.34** 0.55** 0.52** 0.45** 1
t2:14 11. BPRD 0.63** 0.59** 0.27** 0.35** 0.55** 0.34** 0.82** 0.79** 0.75** 0.80** 1

*pb0.05; **pb0.01.t2:15

t3:1

t3:2
t3:3

t3:4

t3:5

t3:6

t3:7

t3:8

t3:9

t3:10

t3:11

t3:12

t3:13

t3:14

t3:15

t3:16

t3:17

t3:18

t3:19

t3:20

t3:21

t3:22

t3:23

t3:24

t3:25

t3:26

t3:27

t3:28

t3:29
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(β10) is fixed. These results, presented in the middle part of Table 3,
show that the mean growth rate is indeed statistically different from
zero (β10=0.567, t=12.6, pb0.01), indicating that a unit change in
time (corresponding to a single year) is, on the average, associatedwith
a 0.57 increase inmath achievement. Moreover, the initial achievement
reveals a considerable amount of variance across students
(σ00

2 =0.945).
Model 1b is an extension of Model 1a in that it allows the growth

parameter to vary randomly across students. In this way, it is possible
to test the second basic question of whether this modification
propitiates a better-fitted model, therefore being suggestive of the
existence of inter-individual differences in individual growth. The
deviance test for the goodness of fit suggests that both parameters are
statistically significant. The variance of growth is σ01

2 =0.285, which is
statistically significant, but lower than the variance involved in the
initial achievement. This model suggests that the correlation between
initial achievement and growth is 0.120.

Table 4 present the results for Model 2, which includes intelligence
as predictor of initial status (r0i) and growth (r1i), after testing all ten
UN
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EC
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Table 3
Estimated parameters of the multilevel linear growth model for math achievement
with predictors not included (unconditional model).

Unconditional linear
growth models

Parameter Coef./
Var.

se t ratio

Model 0: Baseline Model and variance components estimation
Level 2 variance Var(r0i)=σ00

2 1.062 0.156
Level 1 variance Var(eti)=σ0ti

2 1.021 0.079
Deviance −2*Loglikelihood 1658.63

Model 1a: Including moment predictor and its coefficients as fixed parameters
Fixed effects

Mean initial math achievement β00 0.215 0.075 2.866
Mean math growth rate β10 0.567 0.045 12.600

Random effect
Initial math achievement Var(r0i)=σ00

2 0.945 0.104
Error (Level 1 residual variance) Var(eti)=σ1ti

2 0.661 0.077
−2*Loglikelihood 1496.78

Model 1b: Including moment predictor and its coefficients as random parameters
varying across subjects (unconditional model)

Fixed effects
Mean initial math achievement β00 0.215 0.075 2.866
Mean math growth rate β10 0.567 0.053 10.698

Random effect
Initial math achievement Var(r0i)=σ00

2 0.945 0.104
Growth rate Var(r1i)=σ01

2 0.285 0.056
Covariance between initial
achievement and growth rate

Cov(r0i,r1i) 0.064 0.052

Error (Level 1 residual variance) Var(eti)=σ1ti
2 0.377 0.041

Deviance −2*Loglikelihood 1461.25
Difference relative to Model 1a
(df=2)

35.53
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shown (only the significant predictors). The deviance (as compared
with model 1b) is 106.19 (df=3) which indicates that the inclusion of
these predictors generally reduces the discrepancies between observed
and predicted math scores.

Estimates suggest a strong relationship between intelligence
scores (Gf and NR) and initial math achievement. More importantly,
Gf also served as a significant predictor of the growth rate. Fig. 1 shows
individual growth curves for the 166 subjects, separated into three
groups of increasing levels of fluid intelligence. It can be seen that the
slope is slightly less steep for subjects in the low fluid group (left panel
figure). A comparison of variances of the initial status and growth rate
in Model 1b with variances in Model 3, allowed for calculation of the
amount of variance accounted for by intelligence predictors. This was
done by comparing the difference in total variance (estimated by the
unconditional model, 0.945 and 0.285, respectively, for initial
achievement and growth rate) and the residual variance (based on
the fitted model including predictors, 0.556 and 0.259) relative to the
total variance (Raudenbush & Bryk, 2002). Thus for the initial status,
0.41 of the variance ((0.945−0.556)/0.945) is accounted for by
intelligence tests whereas for growth rate, 0.09 ((0.285−0.259)/
0.285) is accounted for by the predictors. Thus, the results of this final
model provide evidence that fluid intelligence is capable of predicting
growth rate above and beyond its capacity to predict math scores
(initial status). This is consistent with our central hypothesis
regarding the role of fluid intelligence in math learning.
Table 4 t4:1

Estimated parameters of the multilevel linear growth model for math achievement
with predictors included (conditional model).

t4:2
t4:3Conditional linear

growth models
Parameter Coef./

Var.
se t ratio

t4:4Model 2: Final model including predictors (conditional)
t4:5Fixed effects
t4:6Mean initial math achievement β00 0.215 0.058 3.706
t4:7Mean math growth rate β10 0.567 0.052 10.903
t4:8Predictors for initial math achievement
t4:9Gf β01 0.616 0.063 9.777
t4:10NR β02 2.054 0.942 2.180
t4:11Predictor for growth in math achievement
t4:12Gf β11 0.274 0.065 4.215
t4:13

t4:14Random effects
t4:15Initial math achievement Var(r0i)=σ00

2 0.556 0.061
t4:16Growth rate Var(r1i)=σ01

2 0.259 0.052
t4:17Covariance between initial

achievement and growth rate
Cov(r0i, r1i) −0.057 0.039

t4:18Error (Level 1 residual variance) Var(eti)=σ1ti
2 0.364 0.040

t4:19Deviance −2*Loglikelihood 1355.06
t4:20Diference as compared with

Model 2b (df=3)
106.19
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3. Discussion

The present study investigated the association of fluid intelligence
with inter-individual differences in intra-individual growth on math
achievement. It has also illustrated the utility of using multilevel
modeling in the analysis of longitudinal data in intelligence research.
The general results are in accordance with a common finding in the
literature that individual differences in fluid intelligence are strongly
related to math achievement when the measures are taken concur-
rently (Floyd et al., 2003; McGrew & Hessler, 1995; Taub et al., 2008).
It then shows that there are important inter-individual differences in
intra-individual growth patterns in math achievement over a two-
year period, with some subjects increasing their math scores at a
faster rate than others. One substantial finding was that these
individual differences in growth rate could be explained, at least in
part, by fluid intelligence. Individuals with higher fluid intelligence
reveal a faster increase inmath scores over a span of two years than do
individuals with a lower fluid intelligence.

This evidence is in accordance with similar findings from previous
research using growth curve modeling that encountered a correlation
between rate of change (Willett, 1989, 1997) and intelligence factors
(Swanson et al., 2008; Voelkle et al., 2006). It is also consistent with
other studies, usingdifferentmethodological approaches,which found a
positive correlation between fluid intelligence and rate of learning
(Hambrick et al., 2008; Tamez et al., 2008;Watkins et al., 2007;Williams
& Pearlberg, 2006). Moreover, it is consistent with the results of the
controlled experimental studies of Klauer and Phye (2008) designed to
develop fluid abilities and which showed that increases in inductive
reasoning abilities were also accompanied by improved learning of
classroom subject matter.

The results of this study support the hypothesis that fluid intelligence
is an important factor in learning a math curriculum. The general
explanation is that fluid intelligence is associated with reasoning abilities
(both inductive and deductive) involved in understanding and solving
novel problems (Ackerman, & Cianciolo, 2002; Blair, 2006; Busse et al.,
2001; Geary, 1993, 2007; Heitz et al., 2005; Kane et al., 2005; Primi, 2002;
Snow et al., 1984; Swanson et al., 2008). However, the results are partly
inconsistentwith those of Zhanget al. (2007). These latter authors applied
latent growth curve modeling to analyze a laboratory memory task
involving verbal and spatial stimulus and found no general association
between rate of learning (slope parameter) and measures of fluid and
crystallized intelligence. They only found that these measures were
correlated with the intercept, i.e., the concurrent initial levels. The only
exceptionwas for a younger samplewhere their results are comparable to
ours with respect to slope parameter.

There are many methodological differences that can explain this
apparent inconsistency. The most significant of these relates to the
dimension of task complexity, which has been found to moderate the
relationship between intelligence and learning (Ackerman, 1996;
Ackerman et al., 2002; Snow et al., 1984; Voelkle et al., 2006). The
learning task in Zhang et al. (2007) study required that the subjects had
to memorize unrelated words through repetitive exposure and spatial
positions of previously viewed figures in amatrix, a taskwhichmay not
required much attentional control, processing and recombination of
new information, as would have been required for amore complex task
such as learn a math concept. Learning parameters of simple tasks
would not be expected to correlate with fluid intelligence measures.
Perhaps a slightlymore complex task, such as those used by Tamez et al.
(2008) and Williams and Pearlberg (2006) involving a group of
associated words, would have been sufficient to reveal the association
with fluid intelligence found in these latter two studies. Conversely,
learningmeasures involving thedomain ofmath taught at school,which
are more comparable to the complex tasks used by Ackerman et al.
(2002), Voelkle et al. (2006), Snow et al. (1984), and Swanson et al.
(2008), would show this relationship and may also explain the
similarity of results with these studies.
Please cite this article as: Primi, R., et al., Fluid intelligence as a predict
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Other relevant methodological difference include the time lag
betweenmeasures used to derivate slope parameters that wasminutes
for Zhang et al. (2007) and one year in the present study. This difference
may again suggest that the construct underlying learning measures
differs between studies and could explain the apparent inconsistencies.
Finally, since results are similar for comparable age groups it could be
suggested that age may also moderates the association of intelligence
and learning.

In summary fluid intelligence has been shown to be related to faster
learning ofmath consistentwith the definition of intelligence as an ability
to learn.Hence, aswas illustrated in this study, growth curvemodeling is a
flexible and important methodological tool for the investigation of
patterns of learning and its association with predictor variables, and can
be very helpful in answering this type of research questions about the
underlying mechanism of intelligence–learning relationships.
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